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Abstract. We describe a generalization of κ-filtered ∞-category, where the role regular cardinal κ
is replaced by a class of small ∞-categories. This leads to a possible generalization of the notion of
accessible ∞-category.

1. Introduction

This paper is a meditation on the notion of an accessible ∞-category. The underlying motivation
is to find ways to talk about accessible ∞-categories which are model independent, and which in
particular avoid as much as possible explicit reference to regular cardinals. In fact, we will introduce
a generalization of regular cardinals, called a regular class of ∞-categories, and we will relate these
to a (potential) generalization of the notion of accessible ∞-categories.

This program is heavily influenced by prior 1-categorical work, most notably the paper of Adamek,
Borceux, Lack, and Rosicky [ABLR02], and in fact our results can be viewed as an ∞-categorical
generalization of what they do However, what we will do here for ∞-categories seems to go beyond
what has been done for 1-categories.

This is a DRAFT version of the paper, which I’m making available on my homepage. At this
point, all the results I hope to include are stated here. Aside from general tidying up, the main
thing that is missing are proofs for some ∞-categorical facts which seem to be clearly true, but
whose proofs seem technically difficult, or are so far elusive for me. If you can provide any assistance
with these matters, please let me know.

1.1. Doctrines and filtered ∞-categories. Given a regular cardinal κ, an ∞-category J is said
to be κ-filtered if every map f : K → J from a κ-small simplicial set extends along the inclusion
K ⊆ KB into the right cone of K. Recall that a simplicial set is κ-small it has fewer than κ
non-degenerate simplices.

Here are two alternate characterizations of “κ-filtered”.

(1) J is κ-filtered if and only if the colimit functor colimJ : Fun(J, S)→ S preserves all κ-small
limits [Lur09, 5.3.3.3].

(2) J is κ-filtered if and only if the slice Jf/ is a weakly contractible simplicial set for every
f : K → J from a κ-small simplicial set K [Lur09, 5.3.1.20–21].

Each of these admit a generalization, where we replace the class of “κ-small simplicial sets” with an
arbitrary full subcategory U of the ∞-category Cat∞ of small ∞-categories. In this case we make
the following definitions.

(1) An small ∞-category J is said to be U-filtered if the colimit functor colimJ : Fun(J, S)→ S

preserves U -limits for all U ∈ U , where S is the ∞-category of (small) ∞-groupoids.
(2) A small ∞-category J is said to be weakly U-filtered if the slice Jf/ is a weakly contractible

simplicial set for every functor f : Uop → J for any U ∈ U .

It turns out that (2) is equivalent to:

(2’) The colimit functor colimJ : Fun(J, S)→ S preserves U -limits for all U ∈ U of diagrams of
corepresentable functors (2.11).
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So U-filtered implies weakly U-filtered (2.13). We write FiltU ⊆ wFiltU ⊆ Cat∞ for the classes of
small U-filtered and weakly U-filtered ∞-categories.

We will be particularly interested the special case when the class U is a doctrine, by which we
mean an essentially small full subcategory of Cat∞.

Both of the above definitions recover Lurie’s notion of κ-filtered ∞-category, where we take
U := κ-sm, the “doctrine of κ-small ∞-categories” (5.1). They both also recover the notion of sifted
∞-category, where we take U := fin×, the “doctrine of finite products” (3.14).

1.2. Sound doctrines. In general, there can be weakly U-filtered ∞-categories which are not
U-filtered (6.3). We say that U is a sound doctrine if in fact FiltU = wFiltU .

There are a number of examples of sound doctrines. We have already mentioned several well-
known examples: the doctrines κ-sm of κ-small ∞-categories for any regular cardinal κ, and the
doctrine fin× of finite products. Other examples are described in §3.

A sound doctrine of particular interest is pb, the doctrine of pullbacks, whose only object is the
walking cospan (4.1). We will say that a small ∞-category is distilled if it is pb-filtered.

1.3. Regular classes. Every class U ⊆ Cat∞ has a “closure” U , defined so that U ∈ U if and only
if colimJ : Fun(J, S)→ S preserves U -limits for all J ∈ FiltU (see §8).

We say that K ⊆ Cat∞ is a regular class if K = U for some doctrine U . We refer to the
corresponding class FiltK of small K-filtered ∞-categories associated to a regular class as a filtration
class. There is an evident bijection between the collections of regular classes and filtration classes.

We use the term “regular” to indicate that this is a kind of generalization of regular cardinal. In
particular, κ 7→ κ-sm gives an embedding of the collection of regular cardinals into the collection of
regular classes (8.1).

The filtration classes generalize the classical notion of ao nullity class, in sense that we have

FiltU ∩ S = NullU ,

where the latter is the class of U-null ∞-groupoids, i.e., the collection of ∞-groupoids X such that
X → Fun(U,X) is an equivalence for all U ∈ U (7.11). This indicates that a classification of regular
classes is at least as difficult as a classification of nullity classes.

Both regular classes and filtration classes admit closure properties as full subcategories of Cat∞:
any regular class K is stable under Kop colimits in Cat∞, and any filtration class FiltK is closed
under K-filtered colimits in Cat∞ (15.1).

1.4. Subcategories of presheaves. We can use a class U ⊆ Cat∞ of small ∞-categories to carve
out various interesting subcategories of presheaf categories. For a small ∞-category C, we define
(§9, §) the following full subcategories of presheaf category PSh(C) := Fun(Cop, S):

• IndU(C) consists of presheaves X ∈ PSh(C) such that the comma category (C/X) is
U-filtered.
• wIndU(C) consists of presheaves X : Cop → S such that the comma category (C/X) is

weakly U-filtered.
• FlatU(C) consists of presheaves X : Cop → S which are U-flat functors, i.e., such that the

left Kan extension X̂ := LKanρX along the Yoneda embedding ρ : C → PSh(C), which is a

functor X̂ : Fun(C, S)→ S, preserves U -limits for all U ∈ U .

Under the additional hypothesis that Cop has all U-limits, we also have the following (§13):

• LimU (C) consists of presheaves X : Cop → S which preserve all U-limits.

We will show (12.1), (12.3) that these subcategories, together with the subcategory of representable
presheaves, form a chain of subcategories:

C ⊆ IndU (C) ⊆ FlatU (C) ⊆ wIndU (C) ⊆ PSh(C).
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Furthermore, if Cop has U-limits, this extends to a chain (13.2), (13.4):

C ⊆ IndU (C) ⊆ FlatU (C) ⊆ LimU (C) ⊆ wIndU (C) ⊆ PSh(C).

In particular, when U is sound, the chain collapses to a sequence of equalities:

IndU (C) = FlatU (C) = wIndU (C) (and = LimU (C) when defined).

1.5. Distilled ∞-categories. As an illustration, we consider pb := {Λ2
2}, the set whose only

element is the “walking span”. This is the doctrine of pullbacks. Let J be a small ∞-category.

(1) Say J is distilled if it is weakly pb-filtered, i.e., if and only if Jf/ is weakly contractible for

every functor f : Λ2
0 → J .

By (2.11) this is formally equvialent to:

(2) J is distilled if and only if colimJ : Fun(J, S)→ S preserves pullbacks of spans of representable

functors, i.e., of functors Λ2
2 → J

ρ−→ Fun(J, S).

We show that pb is a sound doctrine (4.1). Therefore, the above definition is equivalent to:

(3) J is distilled if and only if colimJ : Fun(J, S)→ S preserves all pullbacks.

The regular class pb generated by pb admits alterate characterizations. For instance (16.15):

(4) J is distilled if and only if colimJ : Fun(J, S)→ S preserves limits of all diagrams indexed
by all weakly contractible finite simplicial sets, i.e., pb = U where U is the class of weakly
contractible ω-small ∞-categories.

We can also characterize distilled categories as a full subcategory of Cat∞ (16.9):

(5) J is distilled if and only if it is equivalent to the colimit of a functor f : X → Cat∞, where
X is a small ∞-groupoid and f takes values in ω-filtered ∞-categories.

As a consequence, we learn that (an ∞-category has distilled colimits/a functor preserves distilled
colimits) if and only if it (has/preserves) (i) ω-filtered colimits and (ii) colimits indexed by ∞-
groupoids (16.11).

1.6. Generalized accessibility. Of these subcategories, the one we have labelled IndU (C) bears
some striking similarities to the categories Indκ(C) defined by Lurie. In particular:

• IndU (C) is the free U-filtered colimit completion of C, so that IndU (C) has U -filtered colimits
(10.1), and every functor f : C → A to a category with U -filtered colimits extends essentially

uniquely to a U-filtered colimit preserving functor f̂ : IndU (C)→ A (10.3).
• If in addition f is fully faithful and takes values in the full subcategory of U-compact objects

of A, then f̂ is also fully faithful (11.3).
• Thus, if furthermore A is generated under U-filtered colimits by the essential image of f ,

then IndU (C)
∼−→ A.

For instance, if fin× is the doctrine of finite products, then Indfin×(C) is the free sifted colimit
completion of C. In the case that C has finite coproducts, Indfin×(C) = Limfin×(C) is an example
of a non-abelian derived category as in [Lur09, 5.5.8].

We will say that an ∞-category is U-accessible if it is equivalent to IndU(C) for some small
∞-category C and doctrine U , and generalized accessible if it is U-accessible for some doctrine U .

This last definition begs a question: are there any generalized accessible ∞-categories which are
not accessible in Lurie’s sense? We have left this as unresolved. What we can show is that FlatU (C)
is accessible (14.1), which implies that U-accesibility implies accessibility for all sound doctrines U .
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1.7. Comparison to 1-categorical work. This work is partly inspired by the paper [ABLR02],
from which I have adapted several notions (e.g., U-filtered categories, sound doctrines, etc.) and
some of the results in this paper are simply ∞-categorical upgrades of theirs.

There are some key differences in approach. In [ABLR02], the authors define “U-accessible
categories” to be categories of U-flat functors from a small category to sets, analogous to our
∞-category FlatU(C) of U-flat functors C → S. Unfortunately, the category of U-flat functors
does not seem to come with a convenient universal property, eg., it is not in general the same as
the U-filtered colimit completion of C, so to enforce this these authors must assume an additional
condition on U . Thus, the notion of “sound doctrine” plays a necessary role in their approach.

In our point of view, the correct notion of “U-accessible category” corresponds to what we
have call IndU (C), as this has the desired universal property in all cases, without the “soundness”
restriction. So for us the key notion becomes that of regular class, which precisely classify the
“types” of U -accessibility. Thus a crucial question (as yet unresolved) becomes: is every regular class
generated by some sound doctrine? An affirmative answer would show that generalized accessibility
is the same as ordinary accessibility.

We remark that a correspondence between regular classes and filtration classes (as part of a
“Galois connection” on the collection of classes of categories), is briefly discussed in [BJLS15], as are
some results related to results on U-filtered ∞-groupoids §7.

There are other differences in detail, which mainly come down to the fact that [ABLR02] consider
functors to sets, while we consider functors to ∞-groupoids. For instance:

• Where we have a condition that an ∞-category be weakly contractible, they typically only
require that a 1-category be connected. This distinction appears in the descriptions of
terminally filtered 1-categories or ∞-categories (3.8), (3.9). It also appears in the definition
of (what we have called) weakly U-filtered (2.8).
• The doctrine of pullbacks is not sound in the 1-categorical context, but is sound in our

setting (4.4).

1.8. Acknowledgements. Since I’m not well-versed in modern ∞-categorical techniques, I have
benefited greatly from assistence provided by various people in response to my questions (very often
in online forums such as the Algebraic topology Discord server, and the Homotopy Theory chatroom
on MathOverflow). Those who I would like to thank include:

• Dennis Nardin (for citation to HTT 4.4.2.7).
• Tim Campion: for closure of regular classes under colimits. Also Shaul Barkan, Reuben

Stern.
• Clark Barwick, Rune Haugseng: an isofibration D → G with G ∈ S presents D as a colimit

of f : G→ Cat∞.
• Tim Campion, Shachar Carmeli, Denis-Charles Cisinski, Piotr Pstragowksi: accessibility of

FlatU (C).
• Classifying slices (2.10): Maxime Ramzi and Dylan Wilson.1

1.9. Standard notation. I’m basically using Lurie’s notation (mostly).
We assume a fixed universe. We write Cat∞ for the ∞-category of small ∞-categories, and

S ⊆ Cat∞ for the full subcategory of ∞-groupoids.
I write PSh(C) := Fun(Cop, S) for the presheaf category, and ρ : C → PSh(C) for the Yoneda

functor.

1See answers to “What functors are classified by slices of ∞-categories?” https://mathoverflow.net/q/381549.

https://mathoverflow.net/q/381549
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2. Notions of filtered ∞-categories

In this section, we describe several notions of “filtered” ∞-categories, based not on regular
cardinals, but rather on arbitrary classes of ∞-categories. Both are based on concepts introduced in
a 1-categorical context in [ABLR02].

2.1. Classes and doctrines. In this paper, we will often speak of a class U of small ∞-categories.
Given such a class, we use the same notation U for the full subcategory of Cat∞ spanned by U .

We say that U is a doctrine if it is essentially small, i.e., if there exists a set S of small
∞-categories such that every object in U is equivalent to one in S.

We say that a functor f : C → D between ∞-categories preserves U-limits if f preserves any
U -limits which exist in C, for all U ∈ U . We also use the analogous term preserves U-colimits.

2.2. Remark. Another term for doctrine is limit doctrine, because we will typically be concerned
with limits of functors from elements of a doctrine. Thus it is often convenient describe a doctrine
by describing instead its limits. For instance, the class pb = {Λ2

2} which contains only the walking
cospan can be referred to as the “doctrine of pullbacks”.

2.3. U-filtered ∞-categories. We say that J ∈ Cat∞ is U-filtered if the colimit functor

colimJ : Fun(J, S)→ S

preserves U-limits.

2.4. Remark. Here is an equivalent formulation of U-filtered. Let Funlim(UC, S) ⊆ Fun(UC, S)
denote the full subcategory of limit cones. Then J is U-filtered exactly if for every U ∈ U , the full
subcategory Funlim(UC, S) is stable under J-colimits in Fun(UC, S). (This needs justification.)

We write FiltU ⊆ Cat∞ for the class of small U-filtered ∞-categories. Note that U ⊆ V implies
FiltU ⊇ FiltV , and also that Filt⋃Ui =

⋂
FiltUi .

2.5. Remark. Our definition of “U-filtered” imitates that of [ABLR02, 1.2] for 1-categories, where
the role of ∞-groupoids is replaced with sets. We warn that the 1-categorical and ∞-categorical
notions are distinct, even when we restrict to 1-categories, ultimately because of the role of sets vs.
∞-groupoids.

For instance, if term = {∅} (the “doctrine of the terminal object”), then any connected but
non-contractible 1-category is term-filtered in the sense of [ABLR02] (see [ABLR02, 1.3(vii)]), but
not in our sense (3.8).

Likewise, if pb = {Λ2
2} (the “doctrine of pullbacks”), then any non-trivial groupoid is pb-filtered

in our sense (as a consequence of (7.11)), but not in the sense of [ABLR02] (see [ABLR02, 2.3(vii)]).

2.6. Weakly U-filtered ∞-categories. We say that J ∈ Cat∞ is weakly U-filtered if if for
every U ∈ U and every functor f : Uop → J , the slice category Jf/ is weakly contractible as a
simplicial set.

We write wFiltU ⊆ Cat∞ for the class of small weakly U -filtered ∞-categories. Note that U ⊆ V
implies wFiltU ⊇ wFiltV , and also that wFilt⋃Ui =

⋂
wFiltUi .

2.7. Proposition. If Jop has all U-limits then J is weakly U-filtered.

Proof. This hypothesis implies that J has Uop-colimits for all U ∈ U , so for every f : Uop → J the
slice Jf/ has an initial object and so is contractible. �

2.8. Remark. Our definition of “weakly U-filtered” is also inspired by [ABLR02], where the 1-
categorical analog plays an important role (but is not given a name). However, there is one
significant difference: in [ABLR02], the analogous definition merely requires that the slices Jf/ be
connected, rather than contractible (e.g., as in [ABLR02, 2.1 or 2.2], where this slice is identical to
what they call the “category of cocones”).
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2.9. U-filtered implies weakly U-filtered. We begin by giving an alternate characterization of
weakly U-filtered ∞-categories.

2.10. Lemma. For any functor f : C → D between small ∞-categories, the evident forgetful functor
π : Df/ → D is a left fibration classified by

F := limCop(ρ ◦ fop) : D → S,

where ρ : Cop → Fun(C, S) denotes the Yoneda functor.

Proof. (Thanks to Dylan Wilson for this proof.) There exists a homotopy pullback square of
quasicategories of the form

Df/
//

π

��

Fun(C,D)(f)/

π′

��

D γ
// Fun(C,D)

where π and π′ are the evident forgetful functors (which are left fibrations), and γ is adjoint to
C → {idD} → Fun(D,D). Here “Fun(C,D)(f)/” denotes the slice over the object f of Fun(C,D).
To see this is a homotopy pullback, observe that the analogous square in which the slices are
alternate slices [Lur09, 4.2.1] is a pullback of simplicial sets.

We know that π′ is classified by the corepresentable functor MapFun(C,D)(f,−) : Fun(C,D)→ S,

and therefore π is classified by MapFun(C,D)(f, γ(−)) ≈ limCop MapD(f,−).
�

2.11. Proposition. A small ∞-category J is weakly U-filtered if and only if colimJ : Fun(J, S)→ S

preserves U -limits of corepresentables for all U ∈ U .

Proof. For any functor f : U → Jop, we have (2.10) that the left fibration Jfop/ → J is classified
by F : J → S with F ≈ limU (ρ ◦ f) where ρ : Jop → Fun(Jop, S) is the Yoneda functor. Therefore
colimJ F ≈ colimJ limU (ρ ◦ f) is weakly equivalent to the simplicial set Jfop/.

On the other hand, for any object j ∈ J , we have that colimJ MapJ(j,−) is a terminal object of
S, and thus limU colimJ(ρ ◦ f) is also a terminal object.

Thus, if J is weakly U-filtered, the tautological map τ : colimJ limU (ρ ◦ f)→ limU colimJ(ρ ◦ f)
is a weak equivalence, since both source and target of τ are contractible.

Conversely, colimJ : Fun(J, S)→ S preserves U -limits of corepresentables exactly if τ is always
a weak equivalence, and thus all Jfop/ ≈ colimJ limU (ρ ◦ f) are contractible, whence J is weakly
U-filtered. �

2.12. Remark. In the 1-categorical context, the analog of this is also true, where “weakly U -filtered”
is taken to mean “slices Jf/ are connected”, and we replace the role of S with the category of sets.

2.13. Corollary. Every U-filtered ∞-category is weakly U-filtered: FiltU ⊆ wFiltU .

2.14. Remark. Combining (2.7) and (2.11), we see that if Jop has U -limits, then colimJ : Fun(J, S)→
S preserves U-limits of corepresentables. It is very easy to see this implication directly, since the
Yoneda functor ρ : Jop → Fun(J, S) preserves all limits which exist in Jop, while the colimit functor
colimJ takes any corepresentable functor to a terminal object in S, and of course any limit of
terminal objects in S is a terminal object.

2.15. Closure properties of FiltU and wFiltU .

2.16. Proposition. If C and D are equivalent ∞-categories, then C is U-filtered if and only if D
is, and C is weakly U-filtered if and only if D is.

Proof. . . . �
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We note the following inheritance property for FiltU , involving the notion of a cofinal functor
[Lur09, 4.1.1].

2.17. Proposition. Consider a class U ⊆ Cat∞. If v : J → K a cofinal functor of small∞-categories
such that J is U-filtered, then K is also U-filtered.

Proof. Since v is cofinal, restriction along the induced functor vB : JB → KB between right cones
takes K-colimit cones to J-colimit cones [Lur09, 4.1.1.8]. Therefore the diagram

Fun(K, S)
v∗ //

colimK
''

Fun(J, S)

colimJ

��

S

commutes in the homotopy category of ∞-categories. Since the restriction functor v∗ preserves all
limits, the claim follows.

. . . �

2.18. Remark. It is not the case that if J is weakly U -filtered and J → K a cofinal functor, then K
is weakly U-filtered: see (7.4).

Both FiltU and wFiltU are stable under finite products in Cat∞.

2.19. Proposition. The terminal ∞-category is U-filtered. If J,K are U-filtered, then J ×K is
U-filtered.

Proof. That the terminal ∞-category is U-filtered is immediate.
We can factor the colimit functor colimJ×K : Fun(J ×K, S)→ S as a composite

Fun(J,Fun(K, S))
Fun(J,colimK)−−−−−−−−−→ Fun(J, S)

colimJ−−−−→ S.

Note that if F : A→ B is any functor between ∞-categories with U -limits which preserves U -limits,
then the induced functor Fun(C,F ) : Fun(C,A)→ Fun(C,B) also preserved U -limits, because limits
in functor categories can be computed object-by-object. Thus the composite functor preserves
U-limits, so J ×K is U-filtered.

�

2.20. Proposition. The terminal ∞-category is weakly U-filtered. If J,K are weakly U-filtered, then
J ×K is weakly U-filtered.

Proof. Immediate from the isomorphisms ∆0
f/ ≈ ∆0 and (J ×K)(f,g)/ ≈ Jf/ ×Kg/. �

Both FiltU and wFiltU are stable under retracts.

2.21. Proposition. Suppose s : C → D and r : D → C are functors such that rs is naturally
isomorphic to the identity functor. Then if C is U-filtered so is D, and if C is weakly U-filtered so
is D.

Proof. Because these properties are equivalence invariant (2.16), without loss of generality we can
assume rs = idC .

. . .
The statement for weak U -filtered is immediate from functoriality of slice: given f : Uop → C, we

see that Cf/ is a retract of D/fs. �

2.22. Sound classes and doctrines. We say that a class U ⊆ Cat∞ is a sound class if all small
weakly U-filtered ∞-categories are U-filtered, i.e., if FiltU = wFiltU . We call a class U a sound
doctrine if it is a doctrine and a sound class. (The “sound doctrine” terminology is taken from
[ABLR02, 2.1].)

As we will see, there are many examples of both sound doctrines and unsound doctrines.
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3. Examples of U-filtered ∞-categories

We describe a number of “standard” examples of classes U and associated classes FiltU of U -filtered
∞-categories. All of the exmaples of U in this section will be sound, so in each case we are also
describing wFiltU .

3.1. Universally filtered. We consider univ := Cat∞, the class of all small ∞-categories. Thus
write Filtuniv and wFiltuniv are the corresponding classes of Cat∞-filtered and weakly Cat∞-filtered
∞-categories. As we see below, these two classes are the same: we will call this the class of
universally filtered ∞-categories. Note that universally filtered ∞-categories are U -filtered (and
weakly U-filtered) for every class U .

3.2. Proposition. Let J ∈ Cat∞. The following are equivalent.

(1) J ∈ Filtuniv.
(2) J ∈ wFiltuniv.
(3) The evident inclusion J � JB admits a retraction.
(4) J is κ-filtered for every regular cardinal κ.
(5) The Karoubi completion (i.e., idempotent completion) J+ of J has a terminal object.

Proof.
(1) ⇒ (2) is by (2.13).
(2) ⇒ (3): If J is weakly universally filtered, then the slice Jid / of the identity functor id : J → J

is weakly contractible, and therefore non-empty, and any object of this slice corresponds exactly to
a choice of retraction of J � JB.

(3) ⇒ (4) is [Lur09, 5.3.1.9].
(4) ⇒ (1): [Lur09, 5.3.3.3] says that κ-filtered colimits preserve κ-small limits, so if J is κ-filtered

for all κ, then J-colimits preserve all small limits.
(5) ⇒ (1): Note that if J itself has a terminal object t, then colimJ : Fun(J, S)→ S. is equivalent

to evaluation at t, and so preserves all limits. For the general statement note that the evident
restriction functor i∗ : Fun(J+, S)→ Fun(J, S) is an equivalence and is compatible with taking J or
J+ colimits.

(1) ⇒ (5): By hypothesis the functor colimJ : Fun(J, S)→ S preserves both limits and colimits.
In particular the functor is accessible, so it is corepresented by an object A ∈ Fun(J, S) [Lur09,
5.5.2.7]. Since colimJ preserves small colimits the object A is “completely compact” in the sense
of [Lur09, 5.1.6.5], and so A ∈ Fun(J, S) is a retract of some corepresentable functor in Fun(J, S).
Thus, by the proof of [Lur09, 5.1.4.2], A can be identified as on object of the idempotent completion
(J+)op of Jop, and in fact it is an initial object of this, since Map(A, ρ(j)) ≈ colimJ ρ(j) ≈ ∗ for any
object j in J . Therefore A corresponds to a terminal object of J+ as desired. �

3.3. Example. The “walking idempotent” Idem is universally filtered [Lur09, 5.3.1.9].

3.4. Trivially filtered. We consider U = ∅, the empty class of∞-categories (the “trivial doctrine”).
The following is immediate.

3.5. Proposition. Filt∅ = wFilt∅ = Cat∞. Thus, the trivial doctrine is sound.

We can also consider the variant U = {∆0}, the class consisting only of the terminal ∞-category.

3.6. Proposition. Filt{∆0} = wFilt{∆0} = Cat∞.

Proof. colim: Fun(∆0, S)→ S is an equivalence, so preserves all limits, while for any f : (∆0)op → J
the slice Jf/ is weakly contractible. �
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3.7. Terminally filtered. We consider term := {∅}, the class consisting only of the initial ∞-
category. This is the “doctrine of the terminal object” We write Filtterm and wFiltterm for the
corresponding classes of infinity categories. As we see below, these two classes are the same: we will
call this the class of terminally filtered ∞-categories.

3.8. Proposition. Let J ∈ Cat∞. The following are equivalent.

(1) J ∈ Filtterm.
(2) J ∈ wFiltterm.
(3) J is weakly contractible.

Thus, the doctrine of the terminal object is sound.

Proof.
(1) ⇒ (2) is by (2.13).
(2) ⇒ (3) is immediate since Jf/ = J when f : ∅op → J .
(3) ⇒ (1) since for f : ∅ → S we have that colimJ lim∅ f ≈ colimJ ∗ is weakly equivalent to J ,

while lim∅ colimJ f ≈ lim∅∅ is contractible. �

3.9. Remark. In the 1-categorical context in which one only considers presheaves of sets, we have
that colimJ preserves U -limits of sets iff U is connected.

3.10. Binary-product-filtered ∞-categories. We consider × := {∂∆1}, the class consisting
only of the discrete ∞-groupoid with 2-objects. This is the “doctrine of binary products”. We write
Filt× and wFilt× for the corresponding classes of infinity categories.

3.11. Proposition. Let J ∈ Cat∞. The following are equivalent.

(1) J ∈ Filt×.
(2) J ∈ wFilt×.
(3) The diagonal functor δ : J → J × J is cofinal.

Thus, the doctrine of binary products is sound.

Proof.
(1) ⇒ (2) is by (2.13).
(2) ⇔ (3): Given a pair of objects j1, j2 in J , let f : ∂∆1 → J be the functor determined by this

pair. An elementary argument shows that there is a pullback of simplicial sets

Jf/

��

// (J × J)(j1,j2)/

��

J
δ

// J × J

where the vertical maps are the evident forgetful functors. By [Lur09, 4.1.3.1], δ is cofinal exactly if
the pullback Jf/ is weakly contractible for all objects (j1, j2) of J × J .

(3) ⇒ (1). This follows exactly as in the proof of [Lur09, 5.5.8.11], which for preservation of
binary products relies only on [Lur09, 5.5.8.6], which in turn only relies on the hypothesis that δ is
cofinal. �

3.12. Remark. The empty ∞-category ∅ is in Filt×. As we see below (§3.13), it is the only object
of Filt× which is not sifted, so Filt× = Filtfin× ∪ {∅}.

Furthermore, we have that Filt× = Filt{1,...,n} for any finite n ≥ 2. To see this, note that evidently
Filt× ⊆ Filt{1,...,n}, while if J ∈ Filt{1,...,n} and J 6= ∅ then J is weakly contractible (see the proof
of [Lur09, 5.5.8.7]), and thus J is sifted.
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3.13. Sifted ∞-categories. We consider the class fin× of finite discrete simplicial sets. This is
the “doctrine of finite products”. We write Filtfin× and wFiltfin× of the corresponding classes.

Recall that an∞-category J is sifted when (i) J is non-empty and (ii) the diagonal δ : J → J×J
is cofinal [Lur09, 5.5.8.1]. Also note that we can replace condition (i) with condition (i’) J is weakly
contractible [Lur09, 5.5.8.7].

3.14. Proposition. Let J ∈ Cat∞. The following are equivalent.

(1) J ∈ Filtfin×.
(2) J ∈ wFiltfin×.
(3) J is sifted.

Thus, the doctrine of finite products is sound.

Proof. Let U = {∅, ∂∆1}. Then it is immediate from (3.8) and (3.11) that FiltU = wFiltU is the
class of small sifted ∞-categories.

It is clear that FiltU = Filtfin×, since a functor preserves finite products if and only if it preserves
binary products and the terminal object.

. . .
�

3.15. Remark. It is easy to see that Filtfin× = Filt{∅,∂∆1}.

4. Distilled ∞-categories

We consider pb := {Λ2
2}, the class consisting only of the walking cospan. This is the “doctrine of

pullbacks”. We write Filtpb and wFiltpb for the corresponding classes of ∞-categories.

4.1. Proposition. Let J ∈ Cat∞. The following are equivalent.

(1) J ∈ Filtpb.
(2) J ∈ wFiltpb.

Thus, the doctrine of pullbacks is sound.

We will call such objects distilled ∞-categories (thus2 perpetuating the analogy with “filtered”
and “sifted”).

Proof. (1) ⇒ (2) by (2.13).
(2) ⇒ (1) is a consequence of (2.11), together with a special case of the following proposition

about ∞-topoi (4.2), with X = S and J = Cop, and f = colimJ . �

4.2. Proposition. Let C ∈ S, let X be an ∞-topos, and let f : PSh(C)→ X be a colimit preserving
functor. If f preserves pullback squares in PSh(C) whose underlying cospan is a diagram of
representable presheaves, then f preserves all pullbacks.

Proof. The proof is contained in the proof of [Lur09, 6.1.5.2]; the requirement there that C have
pullbacks is not actually needed. I briefly sketch a proof here.

We will use the “descent principle” for ∞-topoi (applied to X , and to PSh(C) which is also an
∞-topos). Let Cart(X ) ⊆ Fun(∆1,X ) denote the (non-full) subcategory with all objects, whose
morphisms are the Cartesian maps, i.e., the edges α : p→ q in Fun(∆1,X ) such that the square

p(0) //

α(0)

��

q(0)

��

p(1)
α(1)

// q(1)

2regretably?
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is a pullback in X . The descent principle says that (i) Cart(X ) has all small colimits and (ii)
Cart(X ) → Fun(∆1,X ) preserves small colimits. (This property is (1) ⇒ (2) of [Lur09, 6.1.0.6].
There it is stated it terms of the notion of a Cartesian transformation α : p→ q of functors K → X ,
which is the same thing as a functor α′ : K → Cart(X ).)

We can also consider Cart2(X ) := Cart(Cart(X )) ⊆ Fun(∆1 × ∆1,X ). This is a (non-full)
subcategory whose objects are pullback squares, and whose morphisms are cubes such that each
face is a pullback. The above descent principle then implies that (i) Cart2(X ) has all small colimits
and (ii) Cart2(X )→ Fun(∆1 ×∆1,X ) preserves small colimits.

Say that a morphism α : Y → Z in PSh(C) is good if f takes every pullback square in PSh(C) of
the form

(4.3) W //

��

Y

α
��

X // Z

to a pullback square in X . Say that an object Z of PSh(C) is good if every morphism α : Y → Z
with target Z is good. We proceed via the following steps.

(1) Show that every morphism α : ρ(y)→ ρ(z) between representable presheaves is good.
(2) Show that every representable presheaf ρ(z) is good.
(3) Show that every object Z of PSh(C) is good, and so the proposition is proved.

Note that every object of Cart(X ) (i.e., morphism P → X in PSh(C)) is a small colimit of a functor
I → Cart(X ) such that each i ∈ I is sent to an object Pi → Xi where Xi is a representable presheaf.
Then (1) follows by resolving P → X as a colimit of of objects whose target is representable, and
using the hypothesis of the proposition together with the descent principles for PSh(C) and X .
Then (2) follows similarly, by resolving P → Y as a colimit of objects whose target is representable,
and using (1) and the descent principles for PSh(C) and X .

Next note that every object of Cart2(X ) (i.e., pullback square in PSh(C)) is a small colimit of a
functor I → Cart2(X ) such that each i ∈ I is sent to a pullback square where the lower right corner
is a representable presheaf. Then (3) follows by resolving the square in this way, using (2) and the
descent principles for PSh(C) and X . �

4.4. Remark. In the 1-categorical context, the doctrine of pullbacks is not sound [ABLR02, 2.3(vii)].
Ultimately, this is because the inclusion Set ⊆ S does not preserve ∞-categorical colimits.

4.5. Example. Recall that a functor f : A → B from an A which has finite limits preserves finite
limits if and only if it preserves terminal objects and pullbacks [Lur09, 4.4.2.5]. Therefore

Filt{∅,Λ2
2} = Filtterm ∩ Filtpb

is precisely the class Filtω of filtered (=ω-filtered) ∞-categories (as described in §5 below).
In particular, an ∞-category is filtered if and only if it is both distilled and weakly contractible.

4.6. Remark. As we will see, there are many examples of distilled ∞-categories which are not
filtered. In particular, all ∞-groupoids are distilled. We give a complete characterization of distilled
∞-categories in §16.

4.7. Remark. Any ∞-category which has pushouts is distilled (2.7).

4.8. Example. Let F be the free monoid on one generator, regarded as an ∞-category with one
object. Then F is distilled, since it has pushouts.

In “geometric” language this means the following: the mapping cylinder construction, which sends
a space X with endomorphism f : X → X to Mf := X× [0, 1]/(x, 1) ∼ (f(x), 0), preserves homotopy
pullbacks. This can be shown “geometrically” as follows: note that Mf is isomorphic to Tf/Z,
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where Tf is the “biinfinite mapping telescope” (i.e., the homotopy colimit of · · · f−→ X
f−→ X

f−→ · · · ),
which carries an evident free action by Z. The claim follows since (X, f) 7→ Tf describes a filtered
homotopy colimit, and Tf 7→ Tf/Z describes a homotopy quotient by a group action, so both steps
preserve homotopy pullbacks.

4.9. Example. Let pb× := {Λ2
2, ∂∆1}, the “doctrine of pullbacks and binary products”, so Filtpb× =

Filtpb ∩ Filt×. Since any non-empty object of Filt× is sifted and thus contractible (3.12), any
non-empty object of Filtpb× is also contractible. Since every object of Filtpb× is also distilled, we
learn from (4.5) that

Filtpb× = Filtω ∪ {∅}.
It is easy to see that this is precisely the class of J such that colimJ preserves all limits of finite and
non-empty diagrams in S.

5. κ-filtered ∞-categories

Let’s briefly recall the following definition [Lur09, 5.3.1.7]. Given a regular cardinal κ, an ∞-
category J is κ-filtered if every map f : K → J from a κ-small simplicial set K admits an extension

along the inclusion K ⊆ KB to some f̃ : KB → J .
We can reformulate this as follows: J is κ-filtered if and only if for every f : K → C from a

κ-small simplicial set K, the slice Cf/ is non-empty [Lur09, 5.3.1.11].
Let κ-sm be the class of ∞-categories which are equivalent to κ-small simplicial sets. Note that

κ-smo is a doctrine, the “doctrine of κ-small limits”.

5.1. Proposition. Let J ∈ Cat∞, and κ a regular cardinal. The following are equivalent.

(1) J ∈ Filtκ-sm.
(2) J ∈ wFiltκ-sm.
(3) J is κ-filtered.

Proof.
(1) ⇒ (2) is by (2.13).
(2) ⇒ (3): if Jf/ is weakly contractible it is certainly non-empty. (Note that the opposite of a

κ-simplicial set is also κ-small.)
(3) ⇒ (1): this is [Lur09, 5.3.3.3]. �

I’ll write Filtκ for the class of small κ-filtered ∞-categories, so Filtκ = Filtκ-sm = wFiltκ-sm.
Note that if U is any doctrine, then U ⊆ κ-sm for all sufficiently large regular cardinals κ.

Therefore we have the following.

5.2. Proposition. If U is a doctrine, then FiltU ⊇ Filtκ for all sufficiently large regular cardinals κ.

We consider the following variant. Let κ-smconn be the class of∞-categories which are equivalent
to connected κ-small simplicial sets. Thus κ-smconn is the “doctrine of connected κ-small limits”.

5.3. Proposition. Let J ∈ Cat∞, and κ a regular cardinal. The following are equivalent.

(1) J ∈ Filtκ-smconn.
(2) J ∈ wFiltκ-smconn.
(3) J is a coproduct of κ-filtered ∞-categories.

Proof. (1) ⇒ (2) is by (2.13).
(2)⇒ (3): Write J =

∐
α Jα, where the Jα are connected components of the underlying simplicial

set of J . Note that each Jα is an ∞-category. Furthermore, for any map f : K → Jα, it is
straightforward to verify that (Jα)f/ = Jf/. The claim follows from the observation that any map
K → J from a connected K must factor through some connected component Jα.
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(3)⇒ (1): If J =
∐
α∈A Jα where each Jαn is κ-filtered, then the J-colimit functor can be factored

as a composite

Fun(J, S)
LKanπ−−−−→ Fun(A, S)

∐
A−−→ S.

By comparing their right adjoints, we see that LKanπ must be equivalent to a product of colimit
functors colimJα : Fun(Jα, S)→ S. The claim follows from the observation that coproducts preserve
all connected limits. (Justify this.) �

5.4. Non-regular cardinals. Suppose κ is an infinite cardinal, but not necessarily regular. Then
we can define notions of κ-small simplicial set and κ-filtered ∞-category, using the exact same
formulations we gave for regular cardinals. As an immediate consequence, for any infinite (but
possibly non-regular) cardinal κ, we have that

Filtκ-sm ⊆ wFiltκ-sm ⊆ Filtκ.

I do not know whether or not these inclusions are strict when κ is not regular.

5.5. Remark. For regular cardinals, κ 6= κ′ implies Filtκ 6= Filtκ′ . For instance, if κ < κ′, then the
smallest ordinal of size κ is κ-filtered but not κ′-filtered.

It turns out that non-regular cardinals are redundant when we are considering κ-sm-filtered
∞-categories. Recall that for any infinite cardinal κ, the successor cardinal κ+ is regular.

5.6. Proposition. If κ is an infinite cardinal which is not regular, then Filtκ-sm = Filtκ+-sm.

Proof. Clearly Filtκ+-sm ⊆ Filtκ-sm. We need to show that any κ-sm-filtered J is also κ+-sm-filtered.
That is, we need to show that colimJ : Fun(J, S)→ S preserves κ+-small limits. We prove this using
the following lemma (5.7), applied to λ = κ+. Clearly colimJ preserves pullbacks, since ω-sm ⊆ κ-sm.
To show that colimJ preserves κ+-small products, consider a product indexed by some set S of size
less than κ+. There are two cases.

(1) S has size less than κ, in which case colimJ preserves S-products by hypothesis.
(2) S has size equal to κ (since κ+ is the successor cardinal). Since κ is not regular while κ+ is

regular, there exists a collection {Si}i∈I of sets with union S′ =
⋃
i∈I Si, where |Si| , |I| < κ,

but κ ≤ |S′| < κ+, whence |S′| = κ (since κ+ is a successor cardinal). Since |S| = |S′| we
may assume that S = S′. Then a product indexed by S may be computed as composite of
products indexed by the Si and by I, and as colimJ preserves all such products we conclude
it preserves products indexed by S, as desired.

�

5.7. Lemma. Let f : A→ B be a functor of ∞-categories and assume that λ is a regular cardinal
such that that (i) A has λ-small limits and (ii) f preserves pullbacks and λ-small products. Then f
preserves λ-small limits.

Proof. This is (the opposite of) [Lur09, 4.4.2.7]. �

6. Some unsound doctrines

All of the examples of classes U ⊆ Cat∞ we have looked at so far are sound. However, it is easy
to give examples of unsound doctrines.

6.1. Proposition.

(1) Let J ∈ Cat∞ be such that MapJ(x, y) is empty or contractible for every pair of objects x, y
in J . Then J is weakly {E}-filtered, where E = ∆1 ∪∂∆1 ∆1 is the “walking pair of parallel
arrows”.

(2) Let J ∈ Cat∞ be such that AutJ(x) is contractible for every object x ∈ J . Then J is weakly
{S1}-filtered, where S1 = BZ is the circle as an ∞-groupoid.
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Proof. Conditions (1) and (2) imply respectively that J has Eop-colimits or (S1)op-colimits, and thus
that Jf/ is weakly contractible for (respectively) any functors f : Eop → J or f : (S1)op → J . �

6.2. Example. The walking cospan J = Λ2
0 is weakly {E}-filtered and weakly {S1}-filtered.

6.3. Proposition. The doctrines {E} and {S1} are unsound.

Proof. The walking cospan J = Λ2
0 is neither {E}-filtered or {S1}-filtered. For instance, pushouts

in S don’t commute with MapS(S1,−). �

6.4. Remark. We have that Filt{E} ⊇ Filt{S1} ⊇ Filtω-smconn.
. . .
I do not know any example of J ∈ Filt{E} which is not a coproduct of filtered ∞-categories.

6.5. Example. Let U = {Λ2
2, S

1}. The free monoid on one generator F is weakly U -filtered, by (4.8)
and (6.1). However, although F is distilled, it is not {S1}-filtered, and thus is not U-filtered. For
instance, if f : S1×F → S is a constant functor with value X, then colimF limS1 f → limS1 colimF f
is the evident map Map(S1, X) × S1 → Map(S1, X × S1), which is never an equivalence if X is
non-empty.

Later we will show that FiltU consists exactly of coproducts of ω-filtered ∞-categories (16.14).

7. U-filtered ∞-groupoids

In this section we will show that our notions of U-filtration coincide for ∞-groupoids, and in
fact restrict to a nullity class. These results (7.3) and (7.11) are summarized by the sequence of
equalities

FiltU ∩ S = wFiltU ∩ S = B(FiltU ) = NullBU .

7.1. Groupoid completion. Any ∞-category C has a groupoid completion, i.e., a weak equiv-
alence C → C ′ to an ∞-groupoid. We will write BC = C ′ for any choice of groupoid completion of
C. We note the following.

7.2. Lemma. For any C ∈ Cat∞, there exists a right anodyne map j : C → BC to a Kan complex.

Proof. By the small object argument, there exists a factorization C
j−→ C ′

π−→ ∗ into a right anodyne
map j followed by a right fibration π. Since C ′ is a right fibrant simplicial set it is actually a Kan
complex, and since j is right anodyne it is in particular anodyne and thus a weak equivalence. Thus
j : C → C ′ is a model for the groupoid completion C → BC. �

7.3. Proposition. Let U ⊆ Cat∞. If J ∈ FiltU , then BJ ∈ FiltU .

Proof. Let j : J → BJ be a right anodyne map as in (7.2). Since right anodyne maps are cofinal
[Lur09, 4.1.1.3], the conclusion follows from (2.17). �

7.4. Remark. It is not necessarily the case that if J ∈ wFiltU then BJ ∈ wFiltU . For instance, let
J = ∆1 ∪∂∆1 ∆1 be the walking pair of parallel arrows, and let U = {BZ}. Then J ∈ wFilt{BZ}
since J trivially has BZ-limits. However BJ /∈ wFilt{BZ}. We can see this by noting that
BJ ≈ BZ ≈ BZop, and that the slice (BZ)id / of the identity functor of BZ is empty, and so
certainly not weakly contractible.

7.5. Corollary. For any class U ⊆ Cat∞, we have

FiltU ∩ S = B(FiltU ) := {BJ | J ∈ FiltU }.

Proof. We have B(FiltU ) ⊆ FiltU ∩ S by (7.3), while FiltU ∩ S ⊆ B(FiltU ) since B(BJ) ≈ BJ . �
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7.6. Nullity classes. Let U ⊆ S be a class of ∞-groupoids. We say that X ∈ S is U-null if the
tautological map X → MapS(U,X) is an equivalence for all U ∈ U . We write NullU ⊆ S for the
class of U-null ∞-groupoids. When U is a doctrine, we refer to a such a class as a nullity class.

7.7. Remark. Farjoun introduces the notion of a nullity class of unbased spaces in [Far96], although
there he only considers nullity classes of the form Null{U}, i.e., of singleton sets. In fact, for any set
U of ∞-groupoids there exists a U ∈ S such that NullU = Null{U}, so the nullity classes we consider
here are no more general than Farjoun’s. If U = {Ui} contains the empty space as an element, then
take U = ∅. If all elements of U are non-empty, then take U :=

∨
Ui to be a one-point union of the

Uis with respect to some arbitrary choice of basepoints of these spaces.

7.8. Lemma. Let U ∈ Cat∞ and J ∈ S. Then for any functor F : J ×U → S there exists a pullback
square in S of the form

colimJ limU F //

��

limU colimJ F

��

J // MapS(BU, J)

where the horizontal maps are the tautological ones.

Proof. [citation needed] �

Thus, any BU -null ∞-groupoid is also U -filtered.

7.9. Remark. Here is a sketch of a “geometric” proof of (7.8). Take U to be a topologically enriched
category, and J a topological space. We consider the following data:

(1) The category Fun(U,Top) of topologically enriched functors, equipped with the projective
model structure.

(2) The constant functor U → Top with value J , which I will also call J .
(3) An enriched functor F : U → Top equipped with a fibration π : F → J in Fun(U,Top).
(4) An enriched functor E : U → Top which is a cofibrant approximation to the terminal object
∗ of Fun(U,Top).

Then we can form a pullback square of spaces of the form

P //

��

Map(E,F )

��

Map(∗, J) // Map(E, J)

where “Map” is the space of maps between objects of Fun(U,Top). The vertical maps of this square
are fibrations, so it is a homomtopy pullback. This square is precisely the desired pullback square of
the lemma, using the interpretation of Fun(U,Top)/J as a model for “functors J × U → S”, that
the forgetful functors Fun(U,Top)/J → Fun(U,Top) and Top/J → Top “compute colimJ”, and that
colimU E ≈ BU . Note that the left-hand arrow is a fibration P → J whose fiber Px over x ∈ J is
precisely the homotopy limit of Fx : U → Top, where Fx(u) is the fiber of F (u) over x.

7.10. Remark. Here’s a sketch of an ∞-categorical proof of (7.8). Let A : U → S be the constant
functor with value J . We use equivalences S/J ≈ Fun(J, S) and Fun(U, S)/A ≈ Fun(U × J, S). The
key observation is that the limit functor limU : Fun(U × J, S) → Fun(J, S) is equivalent to the
composite

Fun(U, S)/A
limU−−−→ S/ limU A

c∗−→ S/J ,
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where we are using “limU : Fun(U, S)→ S” and pullback along the tautological map c : J → limU A.
This leads to a diagram

Fun(U, S)/A
limU //

(pA)!
��

S/ limU A
c∗ //

(plimU A)!

��

S/J

(pJ )!
��

Fun(U, S)
limU

// S S

in which the left-hand square commutes, and the right-hand square comes with a Cartesian
transformation (pJ)!c

∗ → (plimU A)!. Patching gives a Cartesian transformation, which is presumably
the tautological one. (Here f! denotes the evident functor X/X → X/Y associated to f : X → Y .)

7.11. Corollary. For any class U ⊆ Cat∞, we have FiltU ∩ S = wFiltU ∩ S = NullBU , where
BU := {BU | U ∈ U }.

Proof. We have NullBU ⊆ FiltU ∩ S ⊆ wFiltU ∩ S from (7.8) and (2.13).
Now suppose that X ∈ wFiltU ∩ S, so that for all U ∈ U and f : Uop → X we have that

Xf/ is weakly contractible. But Xf/ is weakly equivalent to the fiber of MapS(B(Uop)B, X) →
MapS(U

op, X) over f . Since (Uop)B is weakly contractible and U ≈ Uop, this amounts to saying
that X → MapS(BU,X) is an equivalence for all U ∈ U , so X ∈ NullBU as desired. �

8. Regular classes and filtration classes

Consider a class U ⊆ Cat∞ of small ∞-categories. Let U ⊆ Cat∞ be the class of small ∞-
categories U such that colimF : Fun(F, S)→ S preserves U limits for all F ∈ FiltU . I will call U the

regular closure of U . By definition we have U ⊆ U = U and FiltU = FiltU . Note also that

U ⊆ V =⇒ FiltU ⊇ FiltV =⇒ U ⊆ V,
and that U = V if and only if FiltU = FiltV .

I will say that a class of small∞-categories is a regular class if it is equal to U for some doctrine
U , and a filtration class if it is equal to FiltU for some doctine U . When U is a doctrine we call
U and FiltU the regular and filtration classes generated by U . Evidently there is a bijective and
order reversing correspondence between regular and filtration classes.

8.1. Remark. As we have seen (5.6), (5.5), the regular and filtration classes κ-sm and Filtκ-sm

associated to infinite cardinals κ are in fact in bijective correspondence with the regular infinite
cardinals. Thus, we may view regular classes as a kind of generalization of regular cardinales.

8.2. Remark. Every regular/filtration class determines a unique nullity class in ∞-groupoids,
by FiltU ∩ S = NullBU (7.11). In particular, for any doctrine U ⊆ S of ∞-groupoids we have
FiltU ∩ S = NullU , so every nullity class arises this way. Thus, we may view filtration classes as a
kind of generalization of nullity classes.

The theory of nullication classes is quite rich (see [Far96]), and therefore so is the the theory of
regular classes. It thus seems unreasonable to give a complete classification of regular classes.

8.3. Remark. Here is a diagram illustrating all doctrines which are subsets of {∅, ∂∆1,Λ2
2}, together

with their associated filtration classes. All of these doctrines are sound: see (5.1), (3.11), (3.14),
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(3.8), (3.5), (3.12), (4.9).

*,×,pb

*,×
;;

;;

*, pb
OO

OO

×, pb
dd

dd

*
OO

OO

;;

;;

×
cc

cc

::

::

pb
OO

OO

dd

dd

∅
dd

dd

OO

OO

99

99

filtereduu

uu

((

((

sifted��

��

))

))

filtereduu

uu

((

((

filtered or ∅
vv

vv

��

��

weakly contractible
))

))

sifted or ∅
��

��

distilledvv

vv
all

Compare with the discussion in the introduction to [BJLS15], which in the 1-categorical setting
describes analogs to these classes. Note that in that setting “weakly contractible” is replaced by
“connected”, and “distilled” is replaced by “pseudo-filtered”. A 1-category is pseudo-filtered its
connected components are filtered; these are precisely the 1-categories in Filtω-smconn, the class of
∞-categories which are filtered for finite connected limits (5.3).

The reader may surmise that a better ∞-categorical analog for this would be Filtω-smctr, the class
of ∞-categories which are filtered for finite weakly contractible limits. As we will see, these are
precisely the same as distilled ∞-categories (16.15).

8.4. The minimal regular class. The smallest regular class is ∅, the class of U ∈ Cat∞ such that
colimJ : Fun(J, S)→ S preserves U -limits for all J ∈ Cat∞, or equivalently that limU : Fun(U, S)→
S preserves all small colimts. Elements of ∅ are contained in every regular class.

8.5. Proposition. Let U ∈ Cat∞. The following are equivalent.

(1) U ∈ ∅.
(2) The Karoubi completion (i.e., idempotent completion) U+ of U has an initial object.

Proof. (1) ⇒ (2). The limit functor limU : Fun(U, S) is corepresentable by the terminal object
t ∈ Fun(U, S). That limU preserves colimits means that t is “completely compact” in the sense
of [Lur09, 5.1.6.5], and so is a retract of some corepresentable functor [Lur09, 5.1.6.8]. The full
subcategory in Fun(U, S) = PSh(Uop) of retracts of corpresentables realizes the Karoubi completion
of Uop, so (Uop)+ = (U+)op has a terminal object, or equivalently U+ has an initial object.

(2) ⇒ (1). Note that if U itself has an iniial object i, then limU : Fun(U, S) → S is equivalent
to evaluation at i, and so preserves all colimits. For the general statement note that the evident
restriction functor Fun(U+, S)→ Fun(U, S) is an equivalence and is compatible with taking U and
U+ colimits. �

8.6. Example. The “walking idempotent” Idem is contained in every regular class.

9. U-accessible and weakly U-accessible categories

Given C ∈ Cat∞ and a doctrine U ⊆ Cat∞, we define full subcategories of the presheaf category
PSh(C):

• IndU(C) ⊆ PSh(C), spanned by presheaves X such that (C/X) ∈ FiltU . We call this the
subcategory of U-ind presheaves.
• wIndU (C) ⊆ PSh(C), spanned by presheaves X such that (C/X) ∈ wFiltU . We call this the

subcategory of weakly U-ind presheaves.

It is clear that IndU (C) ⊆ wIndU (C), since U -filtered implies weakly U -filtered (2.13). Also, IndU (C)
contains all representable presheaves, since (C/ρ(c)) ≈ C/c has a terminal object and so is U -filtered
for every U .
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Note that if U is a sound doctrine, then IndU(C) = wIndU(C) for all C ∈ Cat∞. In fact the
converse is true.

9.1. Proposition. A doctrine U is sound if and only if IndU (C) = wIndU (C) for all C ∈ Cat∞.

Proof. Take C = 1 to be the terminal category. Then for a terminal presheaf ∗ ∈ PSh(C) we have
(C/∗) ≈ C. Thus C is U-filtered if and only if ∗ ∈ IndU(C), and weakly U-filtered if and only if
∗ ∈ wIndU (C). �

Say that an ∞-category A is U-accessible if it is equivalent to IndU(C) for some C ∈ Cat∞,
and weakly U-accessible if it is equivalent to wIndU (C) for some C ∈ Cat∞.

9.2. Example. Let U = ∅ be the trivial doctrine. Then Ind∅(C) = wInd∅(C) = PSh(C).

9.3. Example. Let U be the class of finite discrete∞-groupoids, i.e., the “doctrine of finite products”.
Then IndU (C) = wIndU (C) consists of all presheaves X such that (C/X) is sifted.

9.4. Example. Let U = κ-sm, the “doctrine of κ-small limits”, for some regular cardinal κ. Recall
that Indκ(C) ⊆ PSh(C) is defined to be the class of presheaves X which classify a right fibration
D → C where D is κ-filtered [Lur09, 5.3.5.1]. Since D ≈ (C/X), we have

Indκ-sm(C) = wIndκ-sm(C) = Indκ(C).

Thus, “(weakly) κ-sm-accessible ∞-categories” are exactly the same as “κ-accessible ∞-categories”
in the sense of Lurie.

10. Free U-filtered colimit completion

We fix a doctrine U and a small ∞-category C.

10.1. Proposition. The ∞-category IndU (C) is stable under U-filtered colimits in PSh(C). (That
is, IndU (C) has all U-filtered colimits and the inclusion into PSh(C) preserves them.)

Proof. Consider a colimit diagram X : JB → PSh(C), such that J is U-filtered, and such that for
each object j ∈ J , the comma category (C/X(j)) is U-filtered. We want to show that (C/X(v)) is
U-filtered, where v ∈ JB is the cone point.

We first observe that, without loss of generality, we may assume that X(v) is a terminal
object of PSh(C). To see this, write C ′ := (C/X(v)) and note that PSh(C)/X(v) ≈ PSh(C ′),
so that X corresponds to the terminal object of PSh(C ′), and the evident functor X ′ : JB →
PSh(C)/X(v) ≈ PSh(C ′) is a colimit diagram. Furthermore, for each object j ∈ J , we have
equivalences (C ′/(X ′(j)) ≈ (C/X(j)). Thus, if the special case holds, we may apply it to X ′, and
conclude that (C ′/∗) ≈ (C/X(v)) is U-filtered, since both J and all (C ′/X ′(j)) ≈ (C/X(j)) are
U-filtered.

Now assume that X(v) is a terminal presheaf. We want to show that (C/X(v)) ≈ C is U -filtered,
i.e., that for any U ∈ U , the full subcategory Funlim(UC, S) ⊆ Fun(UC, S) of limit diagrams is stable
under C colimits. Let F : J → Fun(UC, S) be any functor taking values in the full subcategory
Funlim(UC, S), and let F : PSh(C)→ Fun(UC, S) be the left Kan extension on F along the Yoneda
functor ρ : C → PSh(C). We want to show that colimC F ≈ F (∗) is in Funlim(UC, S), and hence
that C is U-filtered.

For each object j ∈ J we have the tautological colimit X(j) ≈ colim(C/X(j)) ρ ◦ π∗j , where

ρ : C → PSh(C) is the Yoneda functor and πj : (C/X(j))→ C is the projection. Since the values

of ρ ◦ π∗j are representable presheaves, the composite functor F ◦ ρ ◦ π∗j takes values in the full

subcategory Funlim(UC, S). Since (C/X(j)) is U-filtered, the colimit of F ◦ ρi also takes values in
Funlim(UC, S). But

colim(C/X(j)) F ◦ ρ ◦ π∗j ≈ F (colim(C/X(j)) ρ ◦ π∗j ) ≈ F (X(j)),
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so F (X(j)) ∈ Funlim(UC, S).
Thus the restriction F |J of F ◦X : JB → Fun(UC, S) to J ⊆ JB takes values in Funlim(UC, S),

and since J is U-filtered so does the colimit of F |J its colimit. But F is colimit preserving, so

colimJ F ◦X ≈ F (X(v)) ≈ F (∗) ≈ colimJ F,

so the colimit of F is a limit diagram as claimed. �

10.2. Corollary. The ∞-category IndU(C) is the smallest subcategory of PSh(C) containing the
essential image of ρ : C → PSh(C) and which is stable under U-filtered colimits.

Proof. Straightforward from the previous proposition, and the fact that every object of IndU (C) is
a U-filtered colimit of representable presheaves. �

As a consequence, the restriction of Yoneda to a functor ρ : C → IndU(C) exhibits the free
U-filtered colimit completion of C.

10.3. Corollary. If A is any ∞-category with all U-filtered colimits, restriction along ρ defines an
equivalence

Fun(IndU (C),A) ⊇ FunFiltU colim(IndU (C),A)
∼−→ Fun(C,A).

from the full subcategory of functors which preserve U-filtered colimits.

Proof. (Compare [Lur09, 5.3.5.10].) This is a consequence of [Lur09, 5.3.6.2]. �

11. U-compact objects

Let A be an ∞-category which is closed under U -filtered colimits. We say that an object A ∈ A
is U-compact if the functor

MapA(A,−) : A → S

corepresented by A preserves U-filtered colimits.
For an ∞-category A which is closed under U -filtered colimits, we write AU−cpt ⊆ A for the full

subcategory of U-compact objects.

11.1. Proposition. IndU (C)U−cpt is precisely the idempotent completion of C in PSh(C).

Proof. (This is basically the proof of [Lur09, 5.4.2.4].) We know that FiltU contains the walking
idempotent (3.3), so A := IndU(C) is idempotent complete, and thus contains a full subcategory
which is the idempotent completion C+ of C. Furthermore, it is clear that C+ ⊆ C ′ := AU−cpt,
since a retract of a U-compact object must also be U-compact.

It remains to show that if X ∈ C ′ then X is a retract of a representable. Every object X ∈ A is

a colimit of the composite (C/X)
π−→ C

ρ−→ A, or in other words, the composite τ of

(C/X)B
iB−→ (A/X)B

r−→ A

is a colimit, where i : (C/X)→ A/X is the tautological map and r is the “natuaral functor” (what
is this)? Furthermore, (C/X) is U-filtered.

The corepresentable functor MapA(X,−) : A → S classifies the left fibration q : AX/ → A (the
forgetful map). Since X is U -compact the functor MapA(X,−) preserves the tautological colimit τ .
Therefore by [Lur09, 3.3.4.5], the induced inclusion

(C/X)×A AX/� (C/X)B ×A AX/
is a weak equivalence of simplicial sets. The target has a tautological vertex (v, idX) (corresponding
to the identity of X as an object of AX/ and the cone point of (C/X)B). Therefore there exists
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a vertex in the source in the same path component. Such a vertex corresponds to a commutative
diagram of the form

ρ(c)

!!

X
idX

//

==

X

in A for some c ∈ C, so the claim is proved. �

The following says that AU−cpt is stable under Uop
-colimits which exist in A.

11.2. Proposition. Let A be an ∞-category closed under U-filtered colimits. If f : Uop → AU−cpt

is a functor with U ∈ U , and if f has a colimit X in A, then X ∈ AU−cpt.

Proof. (Compare [5.3.4.15].) Let g : C → A be a functor with C ∈ FiltU . We have

MapA(X, colimC g) ≈ MapA(colimUop f, colimC g)

≈ limu∈U MapA(f(u), colimC g)

≈ limu∈U colimc∈C MapA(f(u), g(c)) since f(u) ∈ AU−cpt,

≈ colimc∈C limu∈U MapA(f(u), g(c)) since U ∈ U and C ∈ FiltU ,

≈ colimc∈C MapA(colimu∈U f(u), g(c))

≈ colimc∈C MapA(X, g(c)),

so X ∈ AU−cpt. �

11.3. Proposition. Let A be an ∞-category which has all U-filtered colimits. Let C be a small
∞-category and U ⊆ Cat∞. Let F : IndU (C)→ A be a functor which preserves U-filtered colimits,
and let f := F ◦ ρ : C → A be its restriction along Yoneda.

(1) If f is fully faithful and f(C) ⊆ AU−cpt, then F is fully faithful.
(2) F is an equivalence iff

(i) f is fully faithful.
(ii) f(C) ⊆ AU−cpt.
(iii) The objects {f(c)}c∈C generate A under U-filtered colimits.

Proof. Same as the proof of [Lur09, 5.3.5.11]. �

12. Flat presheaves

Any X ∈ PSh(C) gives rise to a functor X̂ : Fun(C, S)→ S, by X̂ = LKanρX, using ρ : Cop →
Fun(C, S). Note that X̂(ρop(c)) ≈ X(c) for c ∈ C.

Say that X is U-flat if X̂ preserves all U-limits. We write FlatU(C) ⊆ PSh(C) for the full
subcategory spanned by all U-flat presheaves.

12.1. Proposition. If (C/X) is U-filtered, then X̂ is U-flat.

Proof. We can compute X̂ as the composite of

Fun(C, S)
π∗−→ Fun((C/X), S)

colim(C/X)−−−−−−−→ S,

where π : (C/X) → C is the forgetful functor. Thus if (C/X) is U-filtered then the composite
preserves U-limits. �

The following is an ∞-categorical version of [ABLR02, 2.4, (ii) ⇒ (iv)].

12.2. Proposition. Let p : D → C be a right fibration classified by a functor X : Cop → S. If X is
U-flat, then Df/ is weakly contractible for every functor f : Uop → D with U ∈ U .
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12.3. Corollary. If X is U-flat, then (C/X) is weakly U-filtered.

Proof. Take D := (C/X) and p the evident projection. �

Taking (12.1) and (12.3) together with (9.1) gives the following.

12.4. Proposition. For any C ∈ Cat∞ and class U ⊆ Cat∞, we have

IndU (C) ⊆ FlatU (C) ⊆ wIndU (C).

Furthermore, U is sound if and only if IndU (C) = FlatU (C) = wIndU (C).

12.5. Remark. In [ABLR02], a category is said to be “U-accessible” if it is equivalent to some
FlatU (C). (More precisely, they state the 1-categorical analogue, involving functors to sets.) I am
not following this choice of language here.

Before giving the proof of (12.2) I’ll describe the idea informally. Recall that Df/ is weakly
equivalent to colimd′∈D limu∈U MapD(fop(u), d′), the colimit of the limit of corepresentable functors
indexed by f .

The first idea is to note that for each pair of objects d, d′ in D we have a pullback square

MapD(d, d′) //

��

MapC(p(d), p(d′))

��

∗
λd

// X(p(d))

of ∞-groupoids, which is the “formula” for spaces of maps in D in terms of X. These squares are
natural in (d, d′) ∈ Dop ×D, though note that the bottom row only depends on the first variable d.

Next we can (i) restrict along fop : U → Dop in the first variable and take limits in U , which
preserves all the pullbacks, and then (ii) take the colimit of the material in the top row with respect
to d′ ∈ D, giving rise to a commutative square

colimd′∈D limu∈U MapD(fop(u), d′) //

��

colimd′∈D limu∈U MapC(p(fop(u)), p(d′))

γ

��

∗ // limu∈U X(p(fop(u)))

Because S is an ∞-topos, the descent property implies that this is also a pullback square. Thus if
we can show γ is an equivalence, then colimd′∈D limu∈U MapD(fop(u), d′) is contractible, as desired.

The map γ is an equivalence because X is U -flat. To see this, note that if G : C → S is given by

G(c) := limu∈U MapC(p(fop(u)), c), then colimDG ◦ p ≈ X̂(G). If X is U-flat then we compute

X̂(G) ≈ X̂(limu∈U ρ(p(fop(u))) ≈ limu∈U X̂(ρ(p(fop(u))) ≈ limu∈U X(p(fop(u)),

where X̂ : Fun(C, S)→ S is the left Kan extension of X, ρ : Cop → Fun(C, S) is the Yoneda functor,

and we use the equivalence X ≈ X̂ ◦ ρ.

12.6. Ideas for the proof.

12.7. Lemma. Let p : D → C be a right fibration classified by a functor F : Cop → S. Consider the
composite of the functors

Cop ×D id×p−−−→ Cop × C MapC−−−−→ S

and form the adjoint φ : D → Fun(Cop, S). Then there is an equivalence colimD φ ≈ F .
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Given a functor p : D → C, we should get a natural transformation

λ : MapD → MapC ◦(pop × p)
of functors Dop ×D → S. This adjoints to a functor

λ̃ : D → Fun(∆1,Fun(Dop, S)).

Now suppose p is a right fibration. Then the following should be true:

• λ̃ lands in the (non-full) subcategory Fun�(∆, Fun(Dop, S)), of morphisms which are pullback
squares in Fun(Dop, S).

• The colimit of λ̃ in Fun(∆1,Fun(Dop, S)) with respect to D should equivalent to a map

λ : ∗ → F ◦ p
in Fun(Dop, S), where F : Cop → S is the functor which classifies p, and λ corresponds to
the “tautological section” of F ◦ p (which classifies a projection D ×C D → D).

Since Fun(Dop, S) is an ∞-topos, we know that Fun�(∆1,Fun(Dop, S)) has colimits and
γ : Fun�(∆1,Fun(Dop, S))→ Fun(∆1,Fun(Dop, S)) preserves colimits.

13. Limit preserving presheaves

Consider a class U ⊆ Cat∞ and a small∞-category C ∈ Cat∞. Suppose that Cop has all U -limits
(or equivalently, that C has all Uop-colimits). In this case, let LimU (C) ⊆ PSh(C) denote the full
subcategory of presheaves spanned by X : Cop → S which preserve all U-limits. This is the full
subcategory of U-limit preserving presheaves.

13.1. Remark. If U is a doctrine, then LimU (C) is a presentable ∞-category [?].

13.2. Proposition. Suppose C ∈ Cat∞ has all U-limits. Then any U-flat functor X : Cop → S

preserves all U-limits.

Proof. Immediate from the observation that there exists a commutative diagram of functors of the
form

Cop

ρ

��

X

$$
Fun(C, S)

X̂

// S

and the fact that the Yoneda functor ρ preserves all limits which exist in Cop. �

13.3. Lemma. Let p : D → C be a left fibration classified by some f : C → S. If C has all U-limits
and f preserves U-limits, then D has all U-limits and p preserves U-limits.

Proof. Because f classifies p, there exists a homotopy pullback square in the Joyal model structure
of the form

D //

p

��

S∗

q

��

C
f
// S

Here q is the evident forgetful functor from pointed ∞-groupoids to ∞-groupoids. We know that
both S and S∗ have small limits, and q preserves all limits. The conclusion is immediate from (the
opposite of) [Lur09, 5.4.5.5]. �

13.4. Corollary. If C has all U-limits and X : Cop → S preserves all U-limits, then (C/X) is weakly
U-filtered.
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Proof. By (??), (C/X)op has all U -limits, since (C/X)op → Cop is a left fibration classifying X. �

13.5. Corollary. Let U ⊆ Cat∞ be a class of small ∞-categories, and suppose C is a small
∞-category such that Cop has all U-limits. Then we have inclusions

IndU (C) ⊆ FlatU (C) ⊆ LimU (C) ⊆ wIndU (C).

In particular, if U is sound, then IndU (C) = FlatU (C) = LimU (C) = wIndU (C).

13.6. Remark. It is a consquence of [Lur09, 5.5.4.18–19] that the inclusion LimU(C) ⊆ PSh(C) is
accessible and admits a left adjoint, and so LimU (C) is a presentable ∞-category.

13.7. Example (Non-abelian derived categories). Suppose C ∈ Cat∞ has finite coproducts. Then
since the doctrine fin× of finite products is sound, we have

Indfin×(C) = Flatfin×(C) = Limfin×(C) = wIndfin×(C).

These are precisely the “non-abelian derived categories” of [Lur09, 5.5.8], which are there denoted
PΣ(C). We have thus reproved a few of the results given there, including that Limfin×(C) is the
free sifted-colimit-completion of C [Lur09, 5.5.8.15] .

14. Flat presheaves are accessible

14.1. Proposition. For any doctrine U and small ∞-category C, the full subcategory FlatU (C) of
PSh(C) is accessibly embedded.

Proof. It suffices to consider the case of U = {U}. Let A = Fun(UB, S), and let B ⊆ A denote the
full subcategory spanned by limit cones. I claim that B is accessibly embedded in A, so that B is
λ-accessible and the inclusion B → A is λ-accessible.

Given a functor F : C → B, let F̂ : PSh(C)→ A be any choice of colimit preserving extension of

C
F−→ B ⊆ A. Thus X ∈ FlatU (C) iff F̂ (X) ∈ B for all F .
. . . �

BTW, here’s my proof: Let A = Fun(DC,S), and let B ⊆ A be the full subcategory spanned
by limit cones. Then you can show that B is accessibly embedded in A. Given an F : C → B, we

can extend to a colimit preserving F̃ : Psh(C) → A. A presheaf X is flat iff F̃ (X) ∈ B for all F .
But Fun(C,B) is accessible, so we can write every F as a sufficiently filtered colimit of some set

{Fi} of functors, and thus X is flat iff F̃i(X) ∈ B for all Fi. So flat presheaves are the pullback of
Psh(C)→

∏
iA←

∏
iB, a diagram of accessible functors.

15. Colimit closure properties of regular and filtration classes

Condsider a class U ⊆ Cat∞ (not necessarily a doctrine). We have the following.

15.1. Proposition.

(1) The full subcategory FiltU ⊆ Cat∞ is stable under U-filtered colimits.

(2) The full subcategory U ⊆ Cat∞ is stable under Uop
-colimits.

The proof of these uses the following decomposition theorem.

15.2. Proposition ([HY17, 2.5]). Let K : I → Cat∞ be a functor from a small ∞-category I, with
K. Let C be an ∞-category which has (i) all I-colimits, and (ii) all Ka-colimits for all objects a of
I. Then C has all K-colimits. Furthermore, such colimits are computed as a composite

Fun(K,C) ≈ limI Fun(K,C)
GI−−→ Fun(I, C)

colimI−−−−→ C,

where for an object {fa}a∈K in limI Fun(K,C), the value of GI({fa}) at an object a ∈ I is equivalent
to colimKa fa.
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In other words, we have colimK f ≈ colima∈I colimKa f |Ka when all such colimits exist in C.
Likewise, by replacing C with Cop, we have that limK f ≈ lima∈Iop limKop

a
f |Ka when all such limits

exist in C.

Proof of (15.1). (1) Apply (15.2) to C := Funlim(UC, S) ⊆ Fun(UC, S), the full subcategory of limit
cones, for all U ∈ U . (2) Apply (15.2) to Cop := Funcolim(JB, S) ⊆ Fun(JB, S), the full subcategory
of colimit cones, for all J ∈ FiltU . �

15.3. Remark. It seems likely to me that in (15.1) we should be able to replace “colimit” with “oplax
colimit” in the sense of [GHN17].

15.4. Remark. Note that if U is a doctrine, then FiltU ⊇ Filtκ for all sufficiently large regular
cardinals κ, and so the full subcategory FiltU ⊆ Cat∞ is stable under κ-filtered colimits for such κ.
Can it be shown in general that FiltU is an accesssible category?

16. Characterization of distilled ∞-categories

We show that, in a certain sense, the distilled∞-categories are precisely those which are a “bundle
of filtered ∞-categories over an ∞-groupoid”.

16.1. ∞-categories as colimits of ∞-groupoid indexed diagrams. Given any functor p : C →
X and object x ∈ X, we write C/x := C ×X X/x, which fits in the pullback square

C/x
π //

q

��

C

p

��

X/x γ
// X

We will always assume in the following that X is an ∞-groupoid, whence γ is a Kan fibration.

16.2. Proposition. If p : C → X is a functor to an ∞-groupoid X, then C is equivalent to the
colimit of a functor f : X → Cat∞, whose value at each object x ∈ X is equivalent to C/x.

Proof. Factor p as C → C ′ → X where the first map is an equivalence and the second an isofibration.
The pullback in simplicial sets along γ : X/x → X is a homotopy pullback in the Joyal model
structure, so C/x→ C ′/x is an equivalence. Thus without loss of generality we may assume that p
is an isofibration, by replacing C with C ′.

Since X is an ∞-groupoid, an edge in C is p-coCartesian if and only if it is an isomorphism
[Lur09, ??]. Since p is an isofibration it is therefore a coCartesian fibration. Now we appeal
to [Lur09, 3.3.4.3], which asserts that if the coCartesian fibration p is classified by a functor
f : X → Cat∞, then the colimit of f is Cat∞ is equivalent to the ∞-category obtained by formally
inverting all p-coCartesian edges in C (or rather, it asserts “Cartesian” version of these claims).
Since the p-Cartesian edges of C are just the isomorphisms in C, we just have that colimX f ≈ C,
as desired

(It is worthwhile spelling this out more carefully in our context. Lurie [Lur09, 3.3.4.3] asserts
that the colimit of f is equivalent to C\ in the model category Set+

∆ of marked simplicial sets, where

C\ is the simplical set C with its p-Cartesian edges marked. As we have noted, these are precisely
the isomorphisms of C, and thus precisely the q-Cartesian edges of q : C → ∆0. Therefore, C\ is a
fibrant object of Set+

∆ [Lur09, 3.1.4.1], and therefore corresponds to C under the Quillen equivalence

between Set+
∆ and the Joyal model structure on Set∆ [Lur09, 3.1.5.3].) �
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16.3. Weak filteredness for classes of weakly contractible ∞-categories.

16.4. Lemma. Let p : C → X any functor from an ∞-category to an ∞-groupoid, and x and object
of X. For every functor f : V → C/x from a weakly contractible simplicial set V , the induced
functor on slices

(C/x)f/ → Cfπ/
is a trivial fibration of simplicial sets.

Proof. Formation of slices is limit preserving as a functor sSetV/ → sSet, so

(C/x)f/
π′ //

��

Cπf/

��

(X/x)qf/
γ′
// Xγqf/

is a pullback square. The map γ′ factors as a composite of two maps

(X/x)qf/ → (Xγqf/)×X X/x → Xγqf/.

The first is formally a Kan fibration by verifying the lifting property, while the second is a base
change of γ which is also seen to be a left fibration and hence a Kan fibration since X is a Kan
complex. Thus γ′ is a Kan fibration.

Furthermore, both the source and target of γ′ are weakly contractible, since they are both slices
of a functor from weakly contractible V to a Kan complex. Thus γ′ is a trivial fibration, and hence
so is π′ as desired.

�

16.5. Lemma. Let U ⊆ Cat∞ be a class of weakly contractible∞-categories. Let C be an∞-category,
and let p : C → X a functor to an ∞-groupoid X. The following are equivalent.

(1) C ∈ wFiltU .
(2) For all objects x of X, we have C/x ∈ wFiltU .

Proof. (1) ⇒ (2). Immediate from (16.4), applied to V := Uop for every U ∈ U and every
f : Uop → C/x.

(2)⇒ (1). Consider g : Uop → C for some U ∈ U . Since Uop is weakly contractible it is non-empty,
so pick any object u of Uop and set x := g(u). As γ : X/x → X is a Kan fibration and u : ∆0 → U
is a monomorphism and weak equivalence, we can construct a lift of pg to a map Uop → X/x, and
hence obtain f : Uop → C/x such that πf = g. We conclude that Cg/ = Cfπ/ is weakly contractible
by the hypothesis and (16.4). �

Now we apply this in the special case of a groupoid completion functor p : C → BC. As before,
we write C/x for the pullback of p along BC/x → BC.

16.6. Proposition. Let U ⊆ Cat∞ be a class of weakly contractible ∞-categories. Then C ∈ wFiltU
if and only if C/x ∈ wFiltU ∩ Filtterm for all objects x of BC.

Proof. Immeditate from (16.5), together with the observation that C/x is necessarily weakly
contractible (i.e., an object of Filtterm) when p is a weak equivalence. �

16.7. Proposition. If U ⊆ Cat∞ is a class of weakly contractible ∞-categories, and if C ∈ wFiltU ,
then C is equivalent to the colimit of some functor f : X → Cat∞, where X is a groupoid completion
of J and f takes values in the full subcategory wFiltU ∩ Filtterm.

Proof. Let p : C → X be a groupoid completion. According to (16.2), J is a colimit of a functor
f : X → Cat∞, whose value f(x) at an object x ∈ X is equivalent to C/x. By (16.5) each
C/x ∈ wFiltU , and each C/x is weakly contractible since p is a weak equivalence. The claim
follows. �
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16.8. A characterization of distilled ∞-categories.

16.9. Corollary. A small ∞-category J is distilled iff it is equivalent to the colimit of some functor
f : X → Cat∞, where X ∈ S and f takes values in Filtω. Furthermore, X can be taken to be
equivalent to the groupoid completion of J .

16.10. Corollary. Filtpb is the smallest filtration class which contains both Filtω and S.

Proof. Filtpb is stable in Cat∞ under distilled coliimits. �

16.11. Corollary. If A is an ∞-category with all filtered colimits, and all colimits indexed by small
∞-groupoids, then A has all distilled colimits.

If f : A→ B is a functor between ∞-categories with all distilled coliimits, and if f preserves both
filtered colimits and colimits indexed by small ∞-groupoids, then f preserves all distilled colimits.

16.12. Example. Let (P,≤) be a directed set (i.e., a poset which is ω-filtered as an ∞-category), and
suppose P is equipped with an action by a discrete group G which acts freely on the underlying set
of P . We can define a 1-category J with

• objects elements x of P , and
• morphisms x→ y the set of g ∈ G such that gx ≤ y.

You can show that J is equivalent to the colimit of the evident functor G→ Cat∞ defined by the
above data. By what we have shown, J is distilled.

16.13. Filtration classes between distilled and filtered. We can use this to characterize
filtration classes which are “between distilled and ω-filtered”.

16.14. Proposition. Let U be a class of ∞-categories such that pb ⊆ U ⊆ ω-sm. Then J is U-filtered
iff

(1) J is distilled, and
(2) the groupoid completion BJ is U-null.

Proof. That elements of FiltU have property (1) is immediate since pb ⊆ U , and that they have
property (2) follows from (??).

Now suppose J is distilled and is such that BJ is U-null. We know (16.9) that J is a colimit in
Cat∞ of some functor f : BJ → Filtω ⊆ Cat∞. Since BJ is U-null it is U-filtered (??), and since
FiltU is stable under U -filtered colimits and contains Filtω, we must have (??) that the colimit J of
f is U-filtered as desired. �

16.15. Example. Applying (16.14) to the class ω-smctr of ω-small ∞-categories which are also
weakly contractible, we find that Filtpb ≈ Filtω-smctr and thus pb = ω-smctr.

16.16. Example. Recall the doctrine ω-smconn of connected ω-small ∞-categories. We have already
seen (5.3) that Filtω-smconn is precisely the class of coproducts of ω-filtered ∞-categories. Now
(16.14) identifies this with the class of distilled ∞-categories whose groupoid completion is discrete.

16.17. Example. Let U = pb ∪ {S1}. Then (16.14) also identifies FiltU with the class of distilled
∞-categories with discrete groupoid completion. Thus FiltU = Filtω-smconn and U = ω-smconn.

This gives an example of a regular class which is generated by an unsound doctrine U (6.5), but
is also generated by a sound doctrine ω-smconn (5.3).

17. On commuting colimits and limits

I need a to make sure that the various ways of “passing limits across colimits” are equivalent.
Not really sure how to do this yet, but I’ll put what I have here.
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Let J be a small ∞-category, and A any ∞-category. Write j : J → JB for the inclusion of the
right cone, and consider the functors

Funcolim(JB, A)
i−→ Fun(JB, A)

j∗−→ Fun(J,A)

where i is the inclusion of the full subcategory of functors JB → A which are colimit cones. The
composite j∗ ◦ i is fully faithful [citation needed], and is an equivalence if and only if A has all
J-colimits.

17.1. Lemma. For any colimit cone f : JB → A, and any functor g : JB → A, we have that

MapFun(JB,A)(i(f), g)→ MapFun(J,A)(j
∗(i(f)), j∗(g))

is an equivalence.

Proof. [citation needed] �

17.2. Corollary. If A has all J-colimits, then the functor j∗ admits a fully faithful left adjoint,
which is equivalent to i ◦ (j∗ ◦ i)−1.
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