
ANALYTIC COMPLETION

CHARLES REZK

Abstract. This is an expository treatment of what we call “analytic completion” of R-
modules, which is a kind of completion defined in terms of quotients of power series modules.
It is closely related to the left derived functors of adic completion, in which guise it has
been studied by several authors.

1. Introduction

The purpose of this note is describe something which I’ll call the “analytic completion” of
an R-module with respect to a finite set of elements in R. This is not a new notion. The case
of {p} ⊂ Z appears often occurs in the homotopy theory literature under the name “Ext-p
completion”, and is well-known to be closely linked to computing the homotopy groups of
p-completions of spaces and spectra; for instance, see [BK72, Ch. VI].

Analytic completion also coincides with the 0th left derived functor of adic completion.
Derived functors of adic completion (in the case of a complete local ring R) are studied in
[Mat74] and [GM92], and topological applications of this theory are given in [HS99, App.
A]; see also [Hov08]. This note is largely a reworking of some of the results of these papers,
and not much is really new. The particular way of describing analytic completion given here
seems new. I have not seen the extension of the theory to simplicial algebras elsewhere. The
treatment of the derived category of analytically complete modules overlaps with [Val].

I’ve tried to make things as self-contained and as elementary as possible. The main purpose
of this note is simply to assert that analytic completion is a Good Thing.

I’d like to thank Martin Frankland for many discussions which helped clarify my thinking
about these ideas.

1.1. Topological and analytic p-completion of integers. Let p ∈ Z be a prime. The
completion of the integers at p, called the ring Zp of p-adic integers, can be constructed in
two different ways.

Topological p-completion of Z. The most familiar construction of the p-adics is as the
inverse limit of quotients of powers of the ideal (p) ⊂ Z. Thus

Zp ≈ limZ/(pn).

To say it slightly differently, elements of Zp can be identified as equivalence classes of sequences
(an) of integers which are Cauchy with respect to the p-adic filtration; that is, Zp is the
completion of Z with respect to the p-adic topology. Thus, we can think of this construction
of the p-adics as a “topological” completion.

Analytic p-completion of Z. There is another description of the p-adic integers which
can be found in any commutative algebra textbook. Let Z[[x]] denote the ring of formal power
series on one variable, with coefficients in Z. There is an isomorphism

Z[[x]]/(x− p)Z[[x]]→ Zp
where the left-hand side is the quotient ring by the principal ideal generated by x− p, and
the right-hand side is the topological p-completion. (A proof that this map is an isomorphism

Date: September 29, 2018.

1



2 CHARLES REZK

will be given below.) If we identify Zp with the limit limZ/pn, then the above isomorphism is
described by the maps Z[[x]]→ Z/pn which send f(x) 7→ f(p). An element of Z[[x]]/(x−p)Z[[x]]
can be thought of as a “formal power series in p” of the form∑

k≥0

ak p
k = a0 + a1 p+ a2 p

2 + · · · ,

where the ak ∈ Z. Finite sums and products are defined as usual for power series, and we are
also allowed to make the identification∑

k≥0

ak p
k+1 = p

∑
k≥0

ak p
k

between formal series. Because of this power series formulation, we will think of this
construction of the p-adics as an “analytic” completion.

Now observe that in either of these two completion constructions, we can replace Z with
an arbitrary abelian group M , thus obtaining “topological” and “analytic” p-completions
M∧p = limM/pkM and Ap(M) = M [[x]]/(x − p)M [[x]] of M . Say that M is topologically
(resp. analytically) p-complete if the evident map M →M∧p (resp. M → Ap(M)) is an
isomorphism. It turns out that the two notions of completion do not coincide in general, and
that though every topologically complete group is analytically complete, the converse is not
true.

A major advantage of analytic completion is that the full subcategory of analytically
complete abelian groups is an abelian subcategory of the category of abelian groups, with
kernels and cokernels computed exactly as they are in abelian groups. This is not true for
topological completion; the cokernel of a map between topologically p-complete groups need
not be topologically p-complete (though it must be analytically p-complete).

It is analytic completion which seems to occur more naturally in homotopy theory. For
instance, a spectrum X is p-complete if and only if its homotopy groups π∗X are analytically
p-complete.

1.2. Organization. In §2, we define the notion of a p-analytic module over a commutative
ring R with a chosen element p. We show that the full subcategory of p-analytic modules
is well-behaved with respect to the usual operations in abelian categories. Then in §3 we
extend our definitions to analytic completion with respect to sequences p = (p1, . . . , pr) of
elements in R.

In §4 we describe analytic completion funtor and investigate its properties. In §5 we prove
an analogue of Nakayama’s lemma for analytic modules, and in §6 we investigate how analytic
completion interacts with tensors and homs. In §7 we show that analytic completion with
respect to a finite sequence p in fact only depends on the radical of the ideal generated by p.

In §8 we define the notion of tameness ; a module M is tame if its higher “koszul homology”
vanishes. In §9 we define the notion of a tame sequence in R, and show that the higher
derived functors of analytic completion with respect to a tame sequence coincide with koszul
homology. We go on to analyze some basic features of homological algebra in categories of
analytic modules.

In §10 we study the derived category D̂R of p-analytic modules. We show that when p is a

tame sequence, then D̂R is equivalent to an easily identified full subcategory of the usual
derived category DR of R-modules. In §11 we begin the study of the homotopy theory of
algebraic objects which are analytically complete, and we consider the specific example of
analytically complete simplicial commutative non-unital R-algebras.

1.3. Notation. In the following, R will be a commutative ring. We write Mod = ModR for
the category of R-modules. Given M ∈ ModR, let M [[x]] denote the R[[x]]-module of power
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series on one indeterminate x with coefficients in M ; the construction M 7→M [[x]] defines a
functor ModR → ModR[[x]]. We note that this functor is exact, and commutes with arbitrary
products.

We write iM : M → M [[x]] for the evident inclusion of M as the set of constant power
series in M [[x]]; it will often be convenient to abuse notation and identify M with its image
iM (M) ⊆M [[x]].

More generally, we may consider power series in several variables: M [[x1, . . . , xn]] ≈
M [[x1, . . . , xn−1]][[xn]]. Given elements fk ∈ (x1, . . . , xn)R[[x1, . . . , xn]], k = 1, . . . ,m, we have
a “coordinate change” map

M [[y1, . . . , ym]]
φ−→M [[x1, . . . , xn]]∑

ak1...kmy
k1
1 · · · y

km
m 7→

∑
ak1...kmf

k1
1 · · · f

km
m .

We typically write g(f1, . . . , fm) for the image of g ∈ M [[y1, . . . , ym]] under φ. Note that if
m = n and the matrix ((∂fi/∂xj)(0)) is invertible, then φ is an isomorphism of rings.

2. p-analytic modules

2.1. Definition. Let p ∈ R. We say that M ∈ Mod is analytically p-complete, or simply
p-analytic, if for every f ∈M [[x]], there exists a unique c ∈M such that

f − c ∈ (x− p)M [[x]].

In other words, there exists a unique c ∈M ⊆M [[x]] such that an equation of the form

f = c+ (x− p)g
holds for some g ∈M [[x]]. Note that we do not require that there be a unique g for which
this equation holds. However, it does happen to be unique, assuming M is p-analytic.

2.2. Proposition. Let p ∈ R, and let M be a p-analytic module. Given f ∈M [[x]], let c ∈M
be the unique element such that f − c ∈ (x− p)M [[x]]. Then there exists a unique element
g ∈M [[x]] such that

f = c+ (x− p)g.

The proposition is immediate from the following lemma.

2.3. Lemma. Let p ∈ R, and let M be a p-analytic module. Then multiplication by (x− p)
is injective on M [[x]].

Proof. Given g ∈ M [[x]], write g = xn(a + xh), with a ∈ M and h ∈ M [[x]]. We will show
that (x− p)g = 0 implies that a = 0; from this it is straightforward to derive the lemma by
induction on n. Since multiplication by x is injective on M [[x]], the identity (x − p)g = 0
implies (x− p)(a+ xh) = 0, and therefore the equality

pa = x(a+ (x− p)h)

holds in M [[x]]. Since pa ∈ M , we must have a+ (x− p)h = 0. Since M is p-analytic, a is
the unique element of M such that a ∈ (x− p)M [[x]], whence a = 0 as desired. �

2.4. Remark. Let Z[t]→ R be the unique ring homomorphism sending t 7→ p. Then an R-
module is p-analytic if and only if it is t-analytic as a Z[t]-module, since M [[x]]/(x−p)M [[x]] =
M [[x]]/(x − t)M [[x]]. Thus, p-analyticity of M is a property purely of the abelian group
endomorphism of M defined by multiplication by p; it does not depend on any other part of
an R-module structure.
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2.5. p-evaluation of power series. If M is p-analytic, and f ∈ M [[x]], we write f(p) (or
f |x=p) for the unique element c ∈M such that f − c ∈ (x− p)M [[x]]. We call the resulting
function

f 7→ f(p) : M [[x]]→M

the p-evaluation function.

2.6. Proposition. Let M be p-analytic.

(1) p-evaluation coincides with the usual notion of evaluation on polynomials M [x] ⊆
M [[x]]. In particular, p-evaluation restricts to the identity map on the image of
iM : M →M [[x]].

(2) p-evaluation factors through an isomorphism M [[x]]/(x− p)M [[x]]
∼−→M .

(3) If g ∈ R[[x]] and d ∈ R are any elements such that g − d ∈ (x− p)R[[x]], then

(gf)(p) = df(p) for any f ∈M [[x]].

(4) p-evaluation is a map of R[x]-modules, in the sense that

(gf)(p) = g(p)f(p) for any g ∈ R[x] and f ∈M [[x]].

In particular, p-evaluation is a map of R-modules.
(5) If R is itself p-analytic, then

(gf)(p) = g(p)f(p) for any g ∈ R[[x]] and f ∈M [[x]].

In particular, the p-evaluation map R[[x]]→ R is an R-algebra homomorphism.

Proof. Properties (1) and (2) are immediate from the definitions. For (3), note that if
f−c ∈ (x−p)M [[x]] and g−d ∈ (x−p)R[[x]], then gf−dc = (g−d)f+d(f−c) ∈ (x−p)M [[x]].
Given this, (4) and (5) are immediate. �

2.7. Taylor’s formula. If M is p-analytic, we obtain a well-defined “Taylor expansion” of
an element f = f0 ∈M [[x]] at p, by successively “solving” equations

fn = cn + (x− p)fn+1

for cn ∈M and fn+1 ∈M [[x]]. We have the following.

2.8. Proposition. If M is p-analytic, then there exists a sequence c0, c1, . . . of elements of
M such that for each n ≥ 0, the sequence c0, . . . , cn−1 is the unique one such that

f ≡
n−1∑
k=0

ck(x− p)k mod (x− p)nM [[x]].

Proof. We have already noted the existence of such elements. To prove uniqueness, it is
enough to show that

∑n−1
k=0 ck(x− p)k ∈ (x− p)nM [[x]] implies that c0 = · · · = cn−1 = 0. By

induction on n, it is enough to consider the case when c0 = · · · = cn−2 = 0, i.e., to show
that c(x − p)n−1 ∈ (x − p)nM [[x]] implies c = 0. By (2.3), this can be reduced to showing
c ∈ (x− p)M [[x]] implies c = 0, which follows because M is p-analytic. �

We refer to cn as the nth Taylor coefficient of f at p. We can actually recover the
classical formula for the Taylor expansion. Given f =

∑
akx

k ∈M [[x]], let

∂(n)
x f =

∞∑
k=0

(
k + n

n

)
ak+nx

k ∈M [[x]].

Formally, ∂
(n)
x = “(1/n!)dn/dxn”. The function M [[x]]→M defined by f 7→ (∂

(n)
x f)(p), is a

homomorphism of R-modules.
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2.9. Proposition. If M is p-analytic, and f ∈M [[x]], then for all n ≥ 0 we have

f ≡
n−1∑
k=0

(∂(k)
x f)(p) (x− p)k mod (x− p)nM [[x]].

Proof. Standard algebraic manipulation shows that

f ≡
n−1∑
k=0

(∂(k)
x f)|x=t (x− t)k mod (x− t)nM [[t, x]]

for any f ∈M [[x]] ⊆M [[t, x]]. The result is obtained by passing to the quotient M [[t, x]]/(t−
p) ≈M [[x]]. �

2.10. The full subcategory of p-analytic modules. Let M̂odp = M̂odR,p denote the full
subcategory of p-analytic modules in ModR.

2.11. Proposition. The full subcategory M̂odp of Mod is closed under arbitrary limits in
ModR, and under cokernels of maps between p-analytic modules.

Proof. Suppose that φ : M → N is a homomorphism between p-analytic modules, and let
K = Kerφ ⊆ M . To show that K is p-analytic, observe that because M is p-analytic, for
f ∈ K[[x]], there exist unique c ∈M and g ∈M [[x]] (using (2.2)) such that f = c+ (x− p)g.
It thus suffices to show that c ∈ K and g ∈ K[[x]]. In fact, we see that in N [[x]] we have

0 = φ(f) = φ(c) + (x− p)φ(g),

and since N is also p-analytic, we must have φ(c) = 0 and φ(g) = 0. Here we write
φ : M [[x]]→ N [[x]] for the map induced by φ : M → N on coefficients; note that the kernel of
this map is precisely K[[x]] ⊆M [[x]]. Thus c ∈ K and g ∈ K[[x]] as desired.

Likewise, M̂odp is closed under arbitrary products of modules, by a straightforward
argument using the fact that the construction M 7→M [[x]] preserves such products.

We have shown that M̂odp is closed under all products and kernels; thus it is closed under
limits.

Suppose φ : M → N is a homomorphism between p-analytic R-modules, let C = Cokφ,
and let π : N → C denote the quotient map. Given f ∈ C[[x]], we must show there exists
a unique c ∈ C such that f − c ∈ (x− p)C[[x]]. To prove existence, choose f ′ ∈ N [[x]] such
that π(f ′) = f . Since N is p-analytic, we have f ′ − c′ ∈ (x− p)N [[x]] for c′ = f ′|p ∈ N ; thus
f − π(c′) ∈ (x− p)C[[x]].

For uniqueness, suppose c ∈ C such that c = (x− p)g in C[[x]] for some g ∈ C[[x]]; we want
to show that c = 0. Choose c′ ∈ N and g′ ∈ N [[x]] such that π(c′) = c and π(g′) = g. Thus
f ′ = c′ − (x − p)g′ ∈ N [[x]] is in the kernel of π, and thus f ′ = φ(f ′′) for some f ′′ ∈ M [[x]].
Since M is p-analytic, we have that there is a c′′ ∈M such that f ′′ − c′′ ∈ (x− p)M [[x]], and
therefore φ(f ′′ − c′′) = f ′ − φ(c′′) ∈ (x − p)N [[x]]. Since N is p-analytic, we conclude that
c′ = φ(c′′), and thus c = 0. �

2.12. Corollary. The image of a map φ : M → N between p-analytic modules is p-analytic.

Proof. The image of φ is isomorphic to the cokernel of Kerφ→M . �

2.13. Proposition. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of R-modules,
and any two of M ′,M,M ′′ are p-analytic, so is the third.

Proof. Given (2.11), it only remains to show that if M ′ and M ′′ are p-analytic, so is M . Given
f ∈M [[x]], consider its image f ′′ ∈M ′′[[x]]. Since M ′′ is p-analytic, we have f ′′ = c′′+(x−p)g′′
for some c′′ ∈M ′′ and g′′ ∈M ′′[[x]]. Lift c′′ and g′′ to elements c1 ∈M and g1 ∈M [[x]], and
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write f1 = c1 + (x − p)g1. Then f ′ = f − f1 ∈ M ′[[x]], and since M ′ is p-analytic we have
f ′ = c′ + (x− p)g′ for some c′ ∈M ′ and g′ ∈M ′[[x]].

Thus we have an identity

f = f1 + f ′ = (c1 + c′) + (x− p)(g1 + g′)

in M [[x]], with c = c1 + c′ ∈ M . It is straightforward to show that c is unique such that
f − c ∈ (x − p)M [[x]], using successively the uniqueness of the choices of c′′ ∈ M ′′ and
c′ ∈M ′. �

3. Analyticity for sequences

Let p be a set of elements in R. We say that M ∈ Mod is p-analytic if it is p analytic

for all p ∈ p. We write M̂odp =
⋂
p∈p M̂odp for the full subcategory of p-analytic modules in

Mod. (For many statements below, the set p will be given as an ordered sequence p1, p2, . . .
of elements of R, so we will usually refer to p as sequence rather than as a set.)

3.1. Proposition. For a set p ⊆ R, the full subcategory M̂odp of Mod is closed under
small limits and cokernels in Mod. The image of a map between p-analytic modules is also
p-analytic. For any short exact sequence of R-modules in which two terms are p-analytic, the
third term is also p-analytic.

Proof. Immediate from (2.11) and (2.13). �

We will show in §7 that the condition of p-analyticity only depends on the radical ideal
generated by p in R.

3.2. p-evaluation for sequences. We can evaluate power series f ∈ M [[x1, . . . , xr]] in
several variables at sequences p = (p1, . . . , pr) such that M is p-analytic.

3.3. Lemma. Suppose p = (p1, . . . , pr) is a finite sequence in R, and let M be p-analytic.
Then for any f ∈M [[x1, . . . , xr]] there exists a unique c ∈M such that

f − c ∈
r∑

k=1

(xk − pk)M [[x1, . . . , xr]].

Proof. Write Mk := M [[x1, . . . , xk]] ⊆ M [[x1, . . . , xr]]. Since M is p-analytic, so is each Mk,
since products of analytic modules are analytic (2.11).

We work by induction on r. The base case r = 1 holds by definition, so let r ≥ 2.
First we show existence of c. Since Mr−1 is p-analytic and hence pr-analytic, and Mr =

Mr−1[[xr]], there exists g ∈Mr−1 such that

f − g ∈ (xr − pr)Mr−1[[xr]] = (xr − pr)Mr.

By induction on r, there exists c ∈ M such that g − c ∈
∑r−1

k=1(xk − pk)Mr−1, whence

f − c = (f − g) + (g− c) ∈
∑r−1

k=1(xk−pk)Mr−1 + (xr−pr)Mr ⊆
∑r

k=1(xk−pk)Mr as desired.
To show uniqueness of c, we may assume f = 0, and thus show that

c ∈M and c ∈
r∑

k=1

(xk − pk)Mr implies c = 0.

Choose gk ∈Mr so that c =
∑r

k=1(xk − pk)gk. Since Mr is p-analytic and hence pr-analytic,
we can evaluate this expression at xr−1 = pr. The pr-evaluation map Mr = Mr−1[[xr]]→Mr−1

is a map of R[[x1, . . . , xr−1]][xr]-modules by (2.6), so we see that

c =
r−1∑
k=1

(xk − pk)gk where gk = gk|xr=pr ∈Mr−1.
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Thus c ∈
∑r−1

k=1(xk − pk)Mr−1, so by induction on r we conclude that c = 0. �

Thus we have a p-evaluation function M [[x1, . . . , xr]]→M for any p-analytic M , so that

c = f(p) ∈ M is the unique c ∈ M such that f − c ∈
∑r

k=1(xk − pk)M [[x1, . . . , xr]]. This
function satsifies properties analogous to (2.6), whose statement we leave to the reader.

3.4. Topologically complete modules are analytic. Let p = (p1, . . . , pr). Say that
M is topologically p-complete if it is p-complete in the usual adic sense, i.e., if M →
limnM/(p1, . . . , pr)

nM is an isomorphism.

3.5. Proposition. If M is topologically p-complete for a finite set p, then it is p-analytic.

Proof. Since M̂odp is closed under limits, to show that limnM/(p1, . . . , pr)
nM is p-analytic it

is enough to show that all (p1, . . . , pr)
n-torsion modules are p-analytic. Since M̂odp is closed

under extensions, it suffices to consider the case when (p1, . . . , pr)M = 0. This is immediate,
for in this case (x− pi)M [[x]] = xM [[x]] for all i = 1, . . . , r. �

3.6. Example. (This example is taken from [HS99, §A.1].) Not every analytic module is
topologically complete. For instance, let R = Z and let p be a prime, let F =

⊕∞
n=0 Z

be a countably generated free module, and let F∧p denote its (ordinary) p-adic completion.

Elements of F∧p are sequences (an)n≥0 in Zp such that for all k ≥ 0, we have an ∈ pkZp for
all but finitely many n. Let M be the cokernel

F∧p
f=(

⊕
pn)∧p−−−−−−−→ F∧p →M → 0

of the map f between topological p-completions of F . The module M is not topologically
p-complete, as may be seen from the fact that the element a = (1, p, p2, p3, . . . ) ∈ F∧p is not
contained in Im(f), but is contained in Im(f) + pnF∧p for all n.

On the other hand, M is p-analytic, being the cokernel of a homomorphism between
p-analytic modules.

3.7. Remark. The theory of Taylor expansions (2.7) shows that an R-module M is p-analytic
if and only if the R[[x]]-module M [[x]] is topologically (x− p)-complete.

3.8. Convergence in analytic modules. Let p ∈ R be an element in a ring, and M an
R-module. Then M is topologically p-complete if and only if, for every sequence (ak)k≥1 in
M such that ak+1 ≡ ak mod pkM for all k ≥ 1, there exists a unique element a ∈M such
that a ≡ ak mod pkM for all k ≥ 1. In other words, M is topologically p-complete if the
limit a = limk→∞ ak in the p-adic topology exists and is unique.

Even though p-analytic modules can fail to be topologically p-complete, there is still a
notion of “limit” in the analytic setting.

Thus, suppose M is p-analytic, and consider a sequence (ak)k≥1 in M such that ak+1 ≡ ak
mod pkM for k ≥ 1. For each k ≥ 0 choose bk ∈M such that

a1 = b0, and ak+1 = ak + pkbk for all k ≥ 1.

Define
f(x) :=

∑
k≥0

bkx
k ∈M [[x]]

and set a := f(p), the p-evaluation of f at p.

3.9. Lemma. The element a constructed above does not depend on the choice of the sequence
(bk), and has the property that a ≡ ak mod pkM for all k ≥ 0.
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Proof. Suppose (bk) and (b′k) are two sequences such that ak+1 = ak + pkbk = ak + pkb′k,

whence pk(b′k − bk) = 0. Let f =
∑

k≥0 bkx
k and f ′ =

∑
k≥0 b

′
kx

k. Then

f ′ − f =
∑
k≥1

(b′k − bk)xk

=
∑
k≥1

(b′k − bk)(xk − pk)

=(x− p)
∑
k≥1

(b′k − bk)(xk−1 + · · ·+ pk−1) ∈ (x− p)M [[x]]

It follows that f ′(p) = f(p) as desired. For the second claim, note that if we write f(x) =
g(x) + xkh(x) with g(x) ∈M [x] a polynomial of degree < k, then f(p) = g(p) + pkh(p) by

(3.5)(1), and g(p) =
∑k−1

j=0 p
jbj = ak. �

Thus, given a sequence (ak)k≥1 in M such that ak+1 ≡ ak mod pkM , we define its limit
to be

a = lim
k→∞

ak := f(p)

where f =
∑

k≥0 bkx
k ∈M [[x]] is any power series such that

∑k−1
j=0 bjp

j = ak for all k ≥ 1.

3.10. Remark. Note that we have only defined limits for sequences (ak) in p-analytic modules
with a very strong convergence property. It does not seem to be possible to define such limits
for arbitrary Cauchy sequences. Given a strictly monotone function γ : N → N, one can
use a version of the above method to define limits for all sequences (ak) such that ai ≡ aj
mod prM for all i, j ≥ γ(r). However, there seems to be no guarantee that the result will
not depend on the choice of γ.

We can extend this limit construction to modules which are analytically complete with
respect to a finite sequence.

3.11. Proposition. Let p = (p1, . . . , pr) be a finite sequence, and suppose that M is p-analytic.
Let J = (p) = (p1, . . . , pr) ⊆ R, and suppose (ak)k≥1 is a sequence in M such that

ak+1 ≡ ak mod JkM for all k ≥ 1.

(1) There exists f ∈ M [[x1, . . . , xr]] such that fk(p) = ak for all k ≥ 1, where fk ∈
M [x1, . . . , xr] is the polynomial consisting of all terms of degree < k in f .

(2) For any two f, f ′ ∈M [[x1, . . . , xr]] as in (1), we have that f(p) = f ′(p).

Therefore we may define

a = lim
k→∞

ak := f(p) for any f as in (1).

Proof. The proofs are straightforward. For (2) use the fact that for elements
u1, . . . , ur, v1, . . . , vr in any commutative ring S, we have that

(u1 · · ·ur)− (v1 · · · vr) =

r∑
k=1

(uk − vk)wk for some w1, . . . , wk ∈ S.

�

4. The analytic completion functor

In this section, we describe, for a finite sequence p = (p1, . . . , pr) of R, a left adjoint to the

inclusion functor M̂odp ⊆ ModR, which we call the analytic p-completion functor. The
key properties of this completion functor are that, viewed as an endofunctor of ModR, it is
idempotent and right exact.
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4.1. Idempotent monads. Let C be a category. An idempotent monad on C is monad
(A, η, µ) on C, with the property that µ : AA→ A is a natural isomorphism; it follows (i) that
Aη : A→ AA and ηA : A→ AA are natural isomorphisms, and (ii) that Aη = ηA. Conversely,
given a pair (A, η) consisting of an endofunctor A : C → C and a natural transformation
η : I → A, there exists a (necessarily unique) µ : AA→ A such that (A, η, µ) is an idempotent
monad, if and only if (i) and (ii) hold.

Given an idempotent monad (A, η, µ) on C, let CA denote the full subcategory of C
consisting of all objects M such that η : M → A(M) is an isomorphism. It is immmediate
that the functor A takes its image in the subcategory CA, and that the resulting functor
A : C → CA is left adjoint to the inclusion functor CA → C. Conversely, the idempotent
monad (A, η, µ) is determined, up to unique natural isomorphism, by the full subcategory
CA. Furthermore, if f : X → Y is a morphism in C, then Af is an isomorphism if and only if
for all objects W in CA, the induced function HomC(f, idW ) : HomC(X,W )→ HomC(Y,W )
is a bijection.

4.2. The p-analytic completion functor. Let p ∈ R. We define a monad (Ap, ηp, µp) on
Mod as follows. Let

Ap(M)
def
= M [[x]]/(x− p)M [[x]] = Cok

[
M [[x]]

·(x−p)−−−−→M [[x]]
]
.

Let ηp : M → Ap(M) be the composite

M
iM−−→M [[x]]

quotient−−−−−→ Ap(M).

Observe that since M [[x1, x2]] ≈ (M [[x2]])[[x1]], and since M 7→M [[x]] is an exact functor, the
module Ap(Ap(M)) is a quotient of a module of the form M [[x1, x2]], and in fact we have
isomorphisms

Ap(Ap(M)) =
Ap(M)[[x1]]

(x1 − p)Ap(M)[[x1]]

=
(M [[x2]]/(x2 − p)M [[x2]])[[x1]]

(x1 − p)(M [[x2]]/(x2 − p)M [[x2]])[[x1]]

≈M [[x1, x2]]/(x1 − p, x2 − p)M [[x1, x2]].

Let µp : ApAp(M)→ Ap(M) be the map

M [[x1, x2]]/(x1 − p, x2 − p)M [[x1, x2]]→M [[x]]/(x− p)M [[x]]

which sends x1 7→ x and x2 7→ x. It is straightforward to check that (Ap, ηp, µp) is a monad.

4.3. Proposition. The monad (Ap, ηp, µp) is an idempotent monad. An object M in Mod is
p-analytic if and only if ηp : M → Ap(M) is an isomorphism.

Proof. To show that µp is an isomorphism, note that we may factor it as

M [[x1, x2]]/(x1 − p, x2 − p)M [[x1, x2]]
µp

++

x1 7→ x
x2 7→ x + y

��

M [[x, y]]/(x− p, y)M [[x, y]]
x 7→ x
y 7→ 0

// M [[x]]/(x− p)M [[x]]

The bottom horizontal map is clearly an isomorphism, and the left vertical map is also seen
to be an isomorphism, using the inverse transformation x 7→ x1, y 7→ x2 − x1.

Now let M be an R-module. Given f ∈M [[x]], let f̄ denote the image of f in the quotient
Ap(M), and let η−1

p (f̄) ⊆M be the preimage of f̄ in M . The set η−1
p (f̄) consists precisely of
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elements c ∈M such that f − c ∈ (x− p)M [[x]], and thus ηp is an isomorphism if and only if
M is p-analytic. �

As a consequence, the functor Ap takes its image in M̂odp, so the resulting functor

Ap : Mod→ M̂odp is left adjoint to the inclusion functor M̂odp → Mod.
Finally we note that analytic completion is R-linear.

4.4. Proposition. The map HomR(M,N)→ ModR(Ap(M),Ap(N)) induced by the functor
Ap is a map of R-modules.

Proof. Straightforward from the definition of Ap. �

4.5. Analytic completion with respect to sequences. Given a finite sequence p =
(p1, . . . , pr) of elements of R, we define a functor Ap : Mod → Mod, and a natural map

ηp : M → Ap(M), as follows. We set

Ap(M)
def
= M [[x1, . . . , xr]]/(x1 − p1, . . . , xr − pr)M [[x1, . . . , xr]],

and we let ηp be the composite

M
iM−−→M [[x1, . . . , xr]]

quotient−−−−−→ Ap(M).

Observe that if p = (p1, . . . , pr) and q = (q1, . . . , qs) are two sequences, then there is an
evident natural isomorphism

φp,q : Ap,q → ApAq,
where p, q is the concatenated sequence (p1, . . . , pr, q1, . . . , qs). This is just the evident
isomorphism

M [[xi, yj ]]/(xi − pi, yj − qj)M [[xi, yj ]] ≈
(M [[yj ]]/(yj − qj)M [[yj ]])[[xi]]

(xi − pi)(M [[yj ]]/(yj − qj)M [[yj ]])[[xi]]
.

Furthermore, we have the following.

4.6. Proposition. If p and q are finite sequences in R, then the diagram

M
ηp

//

ηq

��

ηpq

%%

Ap(M)

Ap(ηq)

��

Ap,q(M)

φp,q

&&

Aq(M) ηp
// ApAq(M)

commutes.

Proof. Straightforward. �

Using the evident isomorphism

ApAp(M) ≈M [[yi, zi]]/(yi − pi, zi − pi)M [[yi, zi]]

we define µp : ApAp(M)→ Ap by sending yi 7→ xi and zi 7→ xi.

4.7. Lemma. If p = (p1, . . . , pr) is a sequence in R, and 1 ≤ k ≤ r, then ηpk : Ap(M) →
ApkAp(M) and Ap(ηpk) : Ap(M)→ ApApk(M) are isomorphisms for all M .
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Proof. Note that we can reorder the elements of the sequence p without changing the functor
Ap or its coaugmentation. Thus, the statement can be reduced to the case that r = 1, which

is (4.3). �

4.8. Proposition. Let p be a finite sequence in R. The data (Ap, ηp, µp) is an idempotent

monad on Mod. An object M of Mod is p-analytic if and only if ηp : M → Ap(M) is an

isomorphism. For a map f : M → N of R-modules, Ap(f) is an isomorphism if and only if

HomR(f, idC) : HomR(N,C)→ HomR(M,C) is an isomorphism for all p-analytic modules
C.

Proof. That this data determines a monad is proved just as for sequences of length 1. That
it is idempotent is a consequence of the above lemma (4.7). �

As a consequence, the functor Ap takes its image in M̂odp, and the resulting functor

Ap : Mod→ M̂odp is left adjoint to the inclusion functor M̂odp → Mod.

4.9. Proposition. Let p be a finite sequence in R. The map HomR(M,N) →
ModR(Ap(M),Ap(N)) induced by the functor Ap is a map of R-modules.

4.10. Exactness properties of analytic completion.

4.11. Proposition. For any finite sequence p of R, the functor Ap : ModR → ModR is right
exact.

Proof. This is immediate from the construction of Ap. Alternately, use the facts that

the completion functor ModR → M̂odp is a left adjoint, and that the inclusion functor

M̂odp → ModR is an exact functor (3.1). �

We will see later that Ap is not generally left exact.

4.12. Proposition. For any finite sequence p of R, the functor Ap : ModR → ModR commutes
with arbitrary products.

Proof. Immediate from the construction of Ap, and the fact that taking products in ModR is
exact. �

4.13. Comparison with topological completion. Given p ∈ R, consider the map
γ̃ : M [[x]]→M∧p = limkM/pnM induced by maps M [[x]]→M/pnM which send

∑
akx

k 7→∑n−1
k=0 akp

k. It is clear that γ̃((x− p)M [[x]]) = 0, and thus we obtain a comparison map

γp : Ap(M)→M∧p

with the property that γp ◦ ηp : M → M∧p coincides with the usual map of M to its p-adic
completion.

4.14. Proposition. For all M , the comparison map γp : Ap(M)→M∧p is surjective.

Proof. Given m ∈M∧p represented by a sequence of elements mn ∈M for n ≥ 1 such that

mn ≡ mn+1 mod pnM , we must produce f =
∑
akx

k ∈M [[x]] such that γ̃(f) = m. In fact,
by hypothesis for every n ≥ 1 we can choose an ∈ R such that pnan = mn+1 −mn. Taking
a0 = m1, we see that

∑n−1
k=0 akp

k = mn for all n ≥ 1, and thus we may take f =
∑
akx

k. �

We have already noted (3.6) that not every p-analytic module is topologically p-complete,
and thus γp need not be an isomorphism.
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For a finite sequence p = (p1, . . . , pr), we may likewise define a comparison map

γp : Ap(M)→M∧p inductively, by

Ap(M) ≈ Apr(Ap1,...,pr−1(M))
Apr (γp1,...,pr−1 )
−−−−−−−−−−→ Apr(M∧p1,...,pr−1

)
γpr−−→ (M∧p1,...,pr−1

)∧pr ≈M∧p .

Since Apr is right exact, we have the following.

4.15. Proposition. For all M , the comparison map γp : Ap(M)→M∧p is surjective.

5. Nakayama lemma

In this section, we prove a kind of Nakayama lemma, saying that Ap(M) ≈ 0 if and only if

M ⊗R R/(p) ≈ 0.

5.1. Lemma. Let M be an R-module, and p = (p1, . . . , pr) a sequence of elements of R.
Then the map ηp : M → Ap(M) descends to an isomorphism

M/(p1, . . . , pr)M
∼−→ Ap(M)/(p1, . . . , pr)Ap(M).

In particular, it follows that M/(p1, . . . , pr)M is p-analytic.

Proof. Immediate from the fact that Ap : Mod → Mod is right exact (4.11) and R-linear

(4.9). �

5.2. Lemma. Let M be an R-module, and p ∈ R. Then Ap(M) ≈ 0 if and only if M/pM ≈ 0.

Proof. Applying the right-exact and R-linear functor Ap to the sequence M
·p−→ M →

M/pM → 0 gives an exact sequence

Ap(M)
·p−→ Ap(M)→ Ap(M/pM)→ 0,

so Ap(M/pM) ≈ Ap(M)/pAp(M). It is clear that ηp : M/pM → Ap(M/pM) =
(M/pM)[[x]]/(x− p)(M/pM)[[x]] is an isomorphism. Thus, Ap(M) ≈ 0 implies M/pM ≈ 0.

Now suppose that M/pM ≈ 0, so that ·p : M →M is surjective. Then ·(x− p) : M [[x]]→
M [[x]] is surjective, since given f =

∑
akx

k ∈M [[x]] there exists a sequence bk ∈M such that

pb0 = −a0 and pbk = −ak + bk−1 for k > 0.

Then f = (x− p)
∑
bkx

k. Thus M/pM ≈ 0 implies Ap(M) ≈ 0. �

5.3. Proposition. Let p = (p1, . . . , pr) be a sequence of elements in R, and let M be an
R-module. Then Ap(M) ≈ 0 if and only if M/(p1, . . . , pr)M ≈ 0.

Proof. For the only if direction, if Ap(M) ≈ 0, then

M/(p1, . . . , pr)M ≈ Ap(M)/(p1, . . . , pr)Ap(M) ≈ 0.

For the if direction, we use induction on r, having proved the case r = 1 above. Suppose that
M/(p1, . . . , pr) ≈ 0. Thus, N = M/p1M is such that N/(p2, . . . , pr)N ≈ 0, and therefore by
the inductive hypothesis Ap2,...,pr(N) ≈ 0. Since Ap2,...,pr(N) ≈ Ap2,...,pr(M)/p1Ap2,...,pr(M),
we conclude that

Ap(M) ≈ Ap1Ap2,...,pr(M) ≈ 0

as desired. �
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6. Hom and tensor

6.1. Proposition. Let p be a set of elements of R. If M,N are R-modules and N is p-analytic,
then HomR(M,N) is p-analytic.

Proof. Choose a free presentation
⊕

J R→
⊕

I R→M → 0 of M . Then there is an exact
sequence of R-modules,

0→ HomR(M,N)→
∏
I

N →
∏
J

N

and since M̂odp is closed under products and kernels in Mod, it follows that HomR(M,N) is
p-analytic. �

6.2. Proposition. If M and N are R-modules, then for any finite sequence p in R, the maps

Ap(M ⊗R N)
Ap(ηp⊗id)
−−−−−−→ Ap(Ap(M)⊗R N), Ap(M ⊗R N)

Ap(id⊗ηp)
−−−−−−−→ Ap(M ⊗R Ap(N))

are isomorphisms.

Proof. We do the first case. By (4.8), it suffices to show for every p-analytic module C that

HomR(ηp ⊗N,C) : HomR(Ap(M)⊗R N,C)→ HomR(M⊗R, C)

is an isomorphism. This is clear, since the map is isomorphic to

HomR(ηp,HomR(N,C)) : HomR(Ap(M),HomR(N,C))→ HomR(M,HomR(N,C))

and HomR(N,C) is p-analytic by (6.1). �

Thus for a finite sequence p in R we can use the left adjoint Ap : ModR → M̂odp to
inclusion to define a “p-analytically completed tensor product”

M,N 7→M⊗̂N := Ap(M ⊗R N) : M̂odp × M̂odp → M̂odp

on the category of analytically p-complete modules. A straightforward argument using (6.2)

shows that ⊗̂ is part of a symmetric monoidal structure on M̂odp, with unit object Ap(R).

Furthermore, this symmetric monoidal structure is closed, since −⊗̂M : M̂odp → M̂odp is

left adjoint to HomR(M,−) : M̂odp → M̂odp using (6.1) and (4.8). Finally, note that Ap is a
strongly symmetric monoidal functor, essentially by construction.

7. The analyticity ideal

We have defined the notion of analytic completeness with respect to a sequence (or subset)
p of elements of R. In this section we observe that this notion in fact depends only on the
radical of the ideal generated by p.

Suppose M is an R-module. Let IM denote the set of p ∈ R such that M is p-analytic.
By the following proposition, IM is an ideal of R, called the analyticity ideal of M .

7.1. Proposition. Let M be an R-module.

(1) M is 0-analytic.
(2) If a, p ∈ R, and M is p-analytic, then M is ap-analytic.
(3) If p, q ∈ R, and M is both p-analytic and q-analytic, then M is (p+ q)-analytic.

Proof.

(1) Immediate, since η0 : M →M [[t]]/tM [[t]] is always an isomorphism.
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(2) Consider the diagram

M [[z]]/(z − p)M [[z]]

z 7→z

uu

z 7→z

**

M [[x, z]]/(x, z − p)M [[x, z]]
x 7→ y − az
z 7→ z

// M [[y, z]]/(y − ap, z − p)M [[y, z]]

of R-module maps. The left-hand vertical map and the bottom horizontal map
are isomorphisms, and therefore the right-hand vertical map is an isomorphism. If
M is p-analytic, then ηp : M → M [[z]]/(z − p)M [[z]] is an isomorphism, and using
this the right-hand vertical map Ap(M) → Aap(Ap(M)) can be identified with
ηap : M → Aap(M), whence M is ap-analytic since this map is iso.

(3) Consider the diagram

M [[z]]/(z − q)M [[z]]

z 7→z

tt

z 7→z

**

M [[x, z]]/(x− p, z − q)M [[x, z]]
x 7→ y − z
z 7→ z

// M [[y, z]]/(y − (p+ q), z − q)M [[y, z]]

of R-module maps. The bottom horizontal map is an isomorphism. The left-hand
vertical map may be identified with Aq(ηp) : Aq(M) → AqAp(M), and thus is an
isomorphism since M is p-analytic. Therefore, the right-hand vertical map is an
isomorphism. Since M is q-analytic, the map ηq : M → M [[z]]/(z − q)M [[z]] is an
isomorphism, and so the right-hand vertical map Aq(M) → Ap+q(Aq(M)) can be
identified with ηp+q : M → Ap+q(M), whence M is (p+ q)-analytic since this map is
iso.

�

7.2. Proposition. For any p ∈ R and n ≥ 1, there is an isomorphism ψ : Apn → Ap of
functors, such that ψ ◦ ηpn = ηp.

7.3. Corollary. If M is an R-module, p ∈ R, and n ≥ 1, then M is p-analytic if and only if
it is pn-analytic. That is, the analyticity ideal IM is radical.

Proof. We define explicit natural homomorphisms of R-modules ψ : Apn → Ap and φ : Ap →
Apn , and we show (i) that ψ ◦ ηpn = ηp, and (ii) that ψ and φ are inverse to each other.

We let ψ : M [[y]]/(y− pn)M [[y]]→M [[x]]/(x− p)M [[x]] be the map induced after passing to
quotients by the R-module homomorphism

M [[y]]→M [[x]]

g(y) 7→ g(xn).

To see that this is well-defined, it suffices to observe that any element which is of the form
(y − pn)g(y) ∈M [[y]] is sent to (xn − pn)g(xn), which is contained in (x− p)M [[x]].

It is straightforward to verify (i).
We let φ : M [[x]]/(x− p)M [[x]]→M [[y]]/(y − pn)M [[y]] be the map induced after to passing

to quotients by the R-module homomorphism

M [[x]]→M [[y]]

f =

n−1∑
k=0

xk fk(x
n) 7→

n−1∑
k=0

pk fk(y).
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Here the fk are formal series in one variable with coefficients in M . To see that this is
well-defined, it suffices to observe that any element which is of the form (x− p)f ∈M [[x]] is

sent to an element of (y − pn)M [[y]]. In fact, if we write f =
∑n−1

k=0 x
kfk(x

n), then

(x− p)f = (x− p)
n−1∑
k=0

xkfk(x
n)

= [xnfn−1(xn)− pf0(xn)] +
n−1∑
k=1

xk[fk−1(xn)− pfk(xn)]

7→ [yfn−1(y)− pf0(y)] +

n−1∑
k=1

pk[fk−1(y)− pfk(y)]

= (y − pn)fn−1(y).

Finally, it is straightforward to verify (ii); i.e., that φ ◦ ψ = id and ψ ◦ φ = id. �

7.4. Corollary. Let p = (p1, . . . , pr) and q = (q1, . . . , qs) be two finite sequences in R. If the

ideals generated by p and q have the same radical, then M̂odp = M̂odq.

8. Tame modules and the Koszul complex

8.1. Koszul complex. Let p ∈ R. For an R-module M , write K•(M,p) for the chain
complex given by

K0(M,p) = K1(M,p) = M [[x]], d(f) = (x− p)f for f ∈ K1(M,p).

It is immediate that H0K•(M,p) ≈ Ap(M).
More generally, for a finite sequence p = (p1, . . . , pr) in R, we define a chain complex

K•(M,p) by

Km(M,p) =
⊕

I⊆{1,...,n}
#I=m

M [[x1, . . . , xr]] · eI ,

where eI is a formal symbol to keep track of summands, and

d(f · ei1,...,im) =

m∑
j=1

(−1)j−1(xij − pij )f · ei1...îj ...im .

We call K•(M,p) the Koszul complex of M with respect to p.1 Note that though the
definition of the Koszul complex depends on the order of the sequence p, reordering the
sequence p gives an isomorphic complex.

We write

Km(M,p)
def
= Hm(K•(M,p))

for the homology of K•(M,p), the koszul homology. It is immediate that K0(M,p) ≈
Ap(M). It is straightforward to show that there is an isomorphism of complexes

K•(M,p) ≈ TotK•
(
K•(M, (p2, . . . , pr)), p1

)
.

Note that for each m the functor M 7→ Km(M,p) is exact (since M 7→ M [[x1, . . . , xr]]

is exact). As a consequence, given a short exact sequence 0 → M ′ → M → M ′′ → 0 of
R-modules, we obtain a long exact sequence

(8.2) · · · → Kq+1(M ′′, p)→ Kq(M
′, p)→ Kq(M,p)→ Kq(M

′′, p)→ · · · .

1This is not really a very good name. Although the complex we are using is vaguely similar to a Koszul
complex, it is not at all the same thing.
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More generally, given a chain complex C• of R-modules, we obtain two spectral sequences
associated to the double complex K•(C•, p), taking the forms

IE1
ij = Ki(Cj , p) =⇒ Hi+j(TotK•(C•, p))(8.3)

IIE2
ij = Kj(HiC•, p) =⇒ Hi+j(TotK•(C•, p)).(8.4)

In particular, the second spectral sequence applied to the double complexK•(K•(M, (p2, . . . , pr)), p1)
gives a composite koszul homology spectral sequence of the form

(8.5) IIE2
ij = Kj

(
Ki(M, (p2, . . . , pr)), p1

)
=⇒ Ki+j(M,p).

8.6. Tameness. Fix a finite sequence p = (p1, . . . , pr) in R. We say that a module M is
tame with respect to p (or p-tame) if Kq(M,p) = 0 for q 6= 0. Note that tameness does not
depend on the order of p, since reordering the sequence gives isomorphic koszul homology.

For sequences of length one, tameness is easy to characterize.

8.7. Lemma. Let p ∈ R. Then an R-module M is p-tame if and only if HomR(R/p∞,M) ≈ 0,

where R/p∞ = colimk R/p
kR is the direct limit in Mod along the sequence R/pk

p·−→ R/pk+1.
In particular, if multiplication by p is injective on M , then M is p-tame.

Proof. Suppose f =
∑
akx

k ∈M [[x]] is such that (x−p)f = 0. Then pa0 = 0 and pak+1 = ak
for k ≥ 0. The sequence of elements (ak) fit together to produce a map R/p∞ →M , and in
fact this construction defines a bijection

K1(M,p) = Ker
[
(x− p)· : M [[x]]→M [[x]]

] ∼−→ Hom(R/p∞,M).

�

8.8. Corollary. If multiplication by p is an isomorphism on M , then Kj(M,p) ≈ 0 for all j.

Proof. By (5.2), M/pM ≈ 0 implies K0(M,p) = Ap(M) ≈ 0, while (8.7) gives K1(M,p) ≈
0. �

It is more difficult to characterize tame modules for sequences with more than one element.
The following is useful for identifying tame modules.

Recall that a module M is regular with respect to p if each sequence

0→M/(p1, . . . , pk−1)M
·pk−−→M/(p1, . . . , pk−1)M →M/(p1, . . . , pk)

is exact for k = 1, . . . , r.

8.9. Proposition. Let p = (p1, . . . , pr). If M is p1-regular and if M/p1M is q = (p2, . . . , pr)
tame, then M is p-tame.

Proof. If we apply K•(−, q) to the exact sequence 0→M
p1−→M →M/p1M → 0, the long

exact sequence (8.2) and the hypothesis that Ki(M/p1M, q) ≈ 0 for i ≥ 1 implies that

Ki(M, q)
p1−→ Ki(M, q)

is an isomorphism for all i ≥ 1, and is injective for i = 0, so that K0(M, q) ≈ Aq(M) is

p1-regular. Now feed this into the spectral sequence (8.5)

IIE2
ij = Kj(Ki(M, q), p1) =⇒ Ki+j(M,p).

Using (8.8), we see that IIE2
ij ≈ 0 for (i, j) 6= (0, 0), whence Km(M,p) ≈ 0 for m ≥ 1. �

8.10. Proposition. If M is regular with respect to a sequence p, then it is also tame with
respect to p.
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Proof. The case of a sequence of length one is (8.7). For sequences of length r ≥ 2, the result
follows using induction on r, since if M is p-regular, then M/p1M is q = (p2, . . . , pr)-regular,
and hence q-tame by induction, and we can therefore apply (8.9). �

Tameness is a significantly weaker property than regularity. For instance, any analytic
module is tame.

8.11. Proposition. If M is p-analytic, then it is p-tame.

Proof. For sequences of length one, this is (2.2). For sequences of length r ≥ 2, let q =
(p2, . . . , pr). If M is p-analytic, then it is necessarily q-analytic, and thus by induction it is
q-tame. Thus

Ki(M, q) ≈ 0 if i ≥ 0, K0(M, q) ≈ AqM ≈M.

The spectral sequence (8.5) IIE2
ij = Kj(Ki(M, q), p1) =⇒ Ki+j(M,p) thus collapses to

Km(M,p) ≈ Km(M,p1), which vanish for m ≥ 1 because M is p1-analytic and therefore
p1-tame by (2.2). �

9. Tame sequences and derived functors of analytic completion

9.1. Tame sequences. We say that a sequence p = (p1, . . . , pr) in R is tame if every free
R-module is tame. By (8.10), every regular finite sequence in R is tame, since such a sequence
will be regular on any free R-module.

9.2. Warning. As we have defined it, “p is tame in the ring R” does not mean the same thing
as “R is a tame module with respect to p”.

There are many tame sequences which are not regular. For instance, any sequence
p = (p1, . . . , pr) of nilpotent elements in R is tame, because every module is p-analytic by
(7.3).

9.3. Remark. If the sequence p = (p) has length one, then it is not hard to see that the
sequence is tame if and only if R, the free module on one generator, is tame, i.e., if and only
if HomR(R/p∞, R) = 0 by (8.7). To prove this, note that (8.7) implies that any submodule
of a p-tame module is p-tame, and that a free module is a submodule of a product of copies of
R, which will necessarily be tame if R is. This argument does not seem generalize to longer
sequences.

9.4. Derived functors of analytic completion. Write LiAp : Mod → Mod for the ith

left derived functor of Ap : Mod → Mod. Because the inclusion functor M̂odp → Mod
is exact, these coincide with the left derived functors of the analytic completion functor

Ap : Mod → M̂odp. In particular, LiAp(M) is p-analytic for all M and i. The basic
observation is that if the sequence p is tame, then the derived functors of Ap coincide with

the homology of the complex K•(−, p).

9.5. Proposition. Suppose p is a tame sequence in R. Then for any R-module M , we have
that

LjAp(M) ≈ Kj(M,p).

Thus, if p is a tame sequence in R, then M is p-tame if and only if LjAp(M) = 0 for j ≥ 1.

To set up the proof, let P• →M be a projective resolution of M , and consider the double
complex K•(P•, p). The spectral sequence (8.3) has E2-term

IE2
ij ≈ LjKi(M,p),
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where LjKi(−, p) denotes the jth derived functor of Ki(−, p). The spectral sequence (8.4)
collapses, and thus we obtain a spectral sequence of the form

(9.6) E2
ij = LjKi(M,p) =⇒ Ki+j(M,p).

Note that since K0(−, p) ≈ Ap, we have that LjAp = LjK0(−, p).

Proof of (9.5). The hypothesis that p is a tame sequence means that Ki(P, p) = 0 for P
projective and i ≥ 1. Therefore LjKi(−, p) = 0 for i ≥ 1, and so the spectral sequence
(9.6) degenerates to give that Kj(M,p) ≈ LjK0(M,p) ≈ LjAp(M). The characterization of
tameness of M is immediate. �

9.7. Analytic completion of complexes.

9.8. Proposition. If p is a tame sequence in R, and if M• is a complex of p-tame R-modules,
there is a strongly convergent spectral sequence

LiAp(HjM•) =⇒ Hi+jAp(M•).

In particular, if M• is degreewise p-tame and the H∗M• are p-analytic, then η : M• → Ap(M•)
is a quasi-isomorphism.

Proof. Consider the double complex K•(M•, p). Because the Mj are tame, the spectral

sequence (8.3) collapses at E2 to give Hj(TotK•(M•, p)) ≈ Hj(Ap(M•)). Thus the spectral

sequence (8.4) takes the form

IIE2
ij = LjAp(HiM•) =⇒ Hi+j(Ap(M•)),

using that p is a tame sequence to identify LjAp with koszul homology. �

9.9. Projectives in M̂odp.

9.10. Proposition. If P is a projective R-module, then Ap(P ) is a projective object of M̂odp.

The category M̂odp has enough projectives.

Proof. The claims are immediate from the fact that Ap : Mod→ M̂odp is left adjoint to the

fully-faithful inclusion M̂odp ⊆ Mod, and the fact that Ap is right exact, and so preserves
surjections. �

9.11. Coproducts. An infinite direct sum of tame modules is not in general tame. However,
we do have a result on the vanishing of the “top” derived functor of analytic completion
applied to a coproduct, under suitable tameness hypotheses.

9.12. Proposition. Let p = (p1, . . . , pr) be a tame sequence in R. Let {Mi} be an indexed
collection of R-modules. If the Mi are p tame, then LrAp(

⊕
Mi) ≈ 0.

Proof. Since a direct sum of modules injects into the direct product, we have an inclusion of
complexes K•(

⊕
Mi, p)→ K•(

∏
Mi, p). Since these complexes are bounded above at r, we

must have that LrAp(
⊕
Mi)→ LrAp(

∏
Mi) is a monomorphism. But K•(−, p), and hence

LiAp, commute with products, so LrAp(
∏
Mi) ≈ 0 by the tamenes hypothesis on the Mi,

whence the claim follows. �

The analytic completion functor Ap : ModR → ModR does not preserve infinite direct

sums, and thus infinite coproducts in M̂odR,p need not coincide with those in ModR. We

reserve the symbol
⊕

for coproducts (i.e., direct sums) in ModR, and
∐

for coproducts in

M̂odp. Observe that for {Mi} in M̂odp, we have
∐
Mi ≈ Ap(

⊕
Mi).



ANALYTIC COMPLETION 19

9.13. Corollary ([Hov08, Prop. 1.4]). Let p = (p1, . . . , pr) be a tame sequence in R. Then the

left derived functors Lq
∐

of the coproduct functor
∐

:
∏

M̂odp → M̂odp vanish for q ≥ r.

Proof. It is straightforward that (Lq
∐

)({Mi}) ≈ LqAp(
⊕
Mi). Now apply (9.12). �

In particular, we have the following.

9.14. Corollary. If p ∈ R is such that HomR(R/p∞, R) ≈ 0, then coproducts are exact in

M̂odp.

Proof. Immediate using (9.3) and (9.13). �

For sequences p longer than one, coproducts in Modp can fail to be exact even in the best

case (e.g., when p is regular); see [Hov08, §1.3] for an example.

9.15. Sequential colimits and injectives: an example. Let p ∈ R, and consider the
R-module R/p∞ = colimk R/p

k as in (8.7), which fits in an exact sequence

R→ p−1R→ R/p∞ → 0.

Each R/pn ∈ M̂odp so Ap(R/pn) ≈ R/pn, but Ap(R/p∞) = 0 by (5.2). Thus when p is not
a unit in R we get an example of analytic completion which does not preserve sequential
colimits.

Note that the colimit in M̂odp of the sequence · · · → R/pk
p·−→ R/pk+1 → · · · is

Ap(R/p∞) ≈ 0. This gives an example of a sequence of monomorphims whose direct

limit is not a monomorphism, and shows that M̂odp is not an AB5 abelian category. We

have shown (9.14) that coproducts are exact in M̂odp if R is p-tame (e.g., if R is p-regular);
this gives a counterexample to the “theorem of Roos”, as in [Nee02].

The example also shows that M̂odp need not have enough injectives; for if R/p embeds

in an injective object I of M̂odp, such a map would necessarily extend to a map from the

colimit of the R/pn in M̂odp, which is not possible since the colimit is 0.

9.16. Analytic completion as an Ext. Given p ∈ R, let C•(p) denote the chain complex
with

C0(p) = C−1(p) =
∞⊕
k=0

R, (da)k = ak−1 − pak,

where we set a−1 = 0. It is straightforward to show that there is an isomorphism of chain
complexes

HomR(C•(p),M) ≈ K•(M,p).

9.17. Proposition. If p ∈ R is regular, then

LiAp(M) ≈ Ext1−i
R (R/p∞,M),

where R/p∞ ≈ colimk R/p
k in ModR.

Proof. Observe that if p is regular, then H0C•(p) = 0 and H−1C•(p) ≈ R/p∞. �

Given a sequence p = (p1, . . . , pr) in R, let C•(p) = Tot[C•(p1)⊗R · · · ⊗R C•(pr)]. It is clear
that there is an isomorphism of chain complexes

HomR(C•(p),M) ≈ K•(M,p).

9.18. Proposition. If p = (p1, . . . , pr) is a regular sequence in R, then

LiAp(M) ≈ Extr−iR (R/(p∞1 , . . . , p
∞
r ),M).
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Proof. The regularity hypotheses ensures that H−rC•(p) ≈ R/(p∞1 , . . . , p∞r ) and HiC•(p) ≈ 0
for i 6= −r. �

9.19. Remark. The object C•(p) is quasi-isomorphic to the “telescope complex” Tel(Xr) of
[GM92], when p generates the maximal ideal a of a complete local ring. In this case, K•(M,p)
is quasi-isomorphic to their “microscope complex” Mic(K•(ar,M)).

10. Derived category of analytic modules

Recall that the (unbounded) derived category DR of R-modules is obtained by inverting
quasi-isomorphisms in the category Ch ModR of unbounded chain complexes of R-modules.
Likewise, given a sequence p = (p1, . . . , pr) in R, we can define the (unbounded) derived

category D̂R,p of p-analytic modules similarly, by inverting quasi-isomorphisms in Ch M̂odR,p.
As is well-known, the derived category DR can be obtained as the homotopy category of

a Quillen model category structure on Ch ModR. This model structure has the following
properties.

(1) Weak equivalences are quasi-isomorphisms.
(2) Fibrations are degree-wise surjections.
(3) Cofibrations are maps with the left-lifting property with respect to trivial fibrations.
(4) The model category structure is cofibrantly generated, with generating cofibrations
{Sn−1(R)→ Dn(R)}n∈Z and generating trivial cofibrations {0→ Dn(R)}n∈Z, where
Sn(R) is the complex concentrated in degree n with module R, and Dn(R) is the
acyclic complex concentrated in degrees n and n− 1 with values R.

(5) The model category structure is proper.

In this section, we show that if p is a tame sequence in R, then we can construct a similar

model category structure for Ch M̂odR,p, and we use this to show that D̂R,p → DR is fully

faithful, and in fact that D̂R,p is equivalent to the full subcategory in DR of complexes whose

homology is p-analytic. Compare with [Val], which carries this out when p is a regular
sequence.

10.1. Model structure for Ch M̂odR,p.

10.2. Theorem. Let p = (p1, . . . , pr) be a tame sequence in R. Then there exists a Quillen

model category structure on Ch M̂odR,p with the following properties.

(1) Weak equivalences are quasi-isomorphisms.
(2) Fibrations are degree-wise surjections.
(3) Cofibrations are maps with the left-lifting property with respect to trivial fibrations.
(4) The model category structure is proper.

Furthermore, the evident adjoint pair

A : Ch ModR � Ch M̂odR,p :U ,
where U is inclusion, and A is degree-wise analytic completion, is a Quillen pair, with
the property that the natural counit map of total derived functors LA ◦ RU → id is an
isomorphism. An object C of Ch ModR is in the essential image of RU if and only if H∗C is
p-analytic.

Thus, if p is tame, then the unbounded derived category D̂R,p of p-analytic modules
is equivalent to the full subcategory of the unbounded derived category DR of modules,
consisting of modules whose homology is p-analytic.

We will need the following lemma.
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10.3. Lemma. Suppose that p is a tame sequence in R, and let f : C → D be a cofibration
in the Quillen model structure on Ch ModR described above. Then we have the following.

(1) If f : C → D is a quasi-isomorphism, so is Ap(f) : Ap(C)→ Ap(D).

(2) If H∗D is p-analytic and if ηp : C → Ap(C) is a quasi-isomorphism, then ηp : D →
Ap(D) is a quasi-isomorphism.

Proof. Because f is a cofibration, it is injective with degreewise projective cokernel. Thus we
have a diagram of complexes

0 // C
f

//

��

D //

��

P //

��

0

0 // Ap(C) // Ap(D) // Ap(P ) // 0

in which the top row is exact and P is degreewise projective. Because p is tame, the complex
P is degreewise tame, whence L1Ap(Pi) ≈ 0 for all i, and thus the bottom row is exact.

For statement (1), we have that H∗P ≈ 0, which is p-analytic. Thus, (9.8) applies to
show that ηp : P → Ap(P ) is a quasi-isomorphism, and thus Ap(f) is a quasi-isomorphism as
desired.

For statement (2), note that both H∗C and H∗D are analytic, and therefore H∗P is
analytic, being an extension of Cok[H∗C → H∗D] and Ker[H∗−1C → H∗−1D]. Thus, (9.8)
applies to show that ηp : P → Ap(P ) is a quasi-isomorphism, and the statement follows. �

10.4. Corollary. Suppose p is a tame sequence. If P is a cofibrant object in Ch ModR, then
H∗P is p-analytic if and only if ηp : P → Ap(P ) is a quasi-isomorphism.

Proof. Immediate from case (2) of (10.3), taking C = 0 and D = P . �

Proof of (10.2). We consider the following classes of morphisms in Ch M̂odR,p.

• W, the class of quasi-isomorphisms in Ch M̂odR,p;

• F , the class of degreewise surjections in Ch M̂odR,p;

• M, the class of degreewise injections in Ch M̂odR,p;

• C, the class of maps in Ch M̂odR,p with the left lifting property with respect toW∩F ;

• T , the class of maps in Ch M̂odR,p with the left lifting property with respect to F .

We will define fibrations, cofibrations, and weak equivalences to be the classes F , C, and W
respectively. It is immediate that T ⊂ C, that W is has the 2 of 3 property, and that all five
classes W, F , M, C, and T are closed under retracts.

We will show the following, where A : Ch ModR → Ch M̂odR,p denotes the left adjoint of
the inclusion functor, and where “fibration”, “cofibration”, etc., refer to the those classes in
the model category structure on Ch ModR.

(1) The functor A takes fibrations to morphisms in F .
(2) The functor A takes trivial cofibrations to morphisms in W.
(3) The functor A takes cofibrations to morphisms in C∩M, and takes trivial cofibrations

to morphisms in T .

(4) Any map in Ch M̂odR,p can be factored into a map in C ∩M followed by a map in
W ∩F , and into a map in W ∩ T followed by a map in F .

(5) We have W ∩ C ⊂ T .
(6) We have C ⊂ M.
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The model structure for Ch M̂odR,p follows immediately; statement (4) gives the fac-

torization axiom, and statement (5) gives the remaining lifting part of the lifting axiom.
Right properness is immediate, and left properness follows from statement (6) and standard
arguments in abelian categories.

It is immediate that Ch ModR � Ch M̂odR,p is a Quillen pair. To show that LA◦RU → id
is an isomorphism, and that the essential image of RU consists of complexes with p-analytic
homology, is a straightforward exercise using (10.4).

It remains to prove statements (1)–(6).
Statement (1) is just the fact that analytic completion is right exact, so that A preserves

degreewise surjections.
Statement (2) is precisely case (1) of (10.3).
Most of statement (3) is an immediate consequence of lifting properties in Ch ModR, and

the fact that the inclusion functor U preserves fibrations and trivial fibrations. The fact that
A takes cofibrations into M is immediate from the fact that cofibrations in Ch ModR are
degreewise split monomorphisms.

To prove statement (4), let f : M → N be a map in Ch M̂odR,p. If f = pi with i : M → D
and p : D → N is any factorization in Ch ModR of f , then there exists a unique map q in

M
j
//

i
��

Ap(D)

q

��

D p
//

ηp

<<

N

making the diagram commute, since N is degreewise analytic. Setting j = ηpi, we obtain

a factorization f = qj in Ch M̂odR,p. Furthermore, up to isomorphism, j = Ap(i) and

q = Ap(p).
If p is a fibration in Ch ModR, then q ∈ F by statement (1). If i is a cofibration in

Ch ModR and either i or p is a quasi-isomorphism, then (10.3) implies that ηp : D → Ap(D)

is a quasi-isomorphism. Thus, statements (2) and (3) imply that we can obtain the desired

factorizations in Ch M̂odR,p by starting with an appropriate factorization f = pi in Ch ModR
and applying the above construction.

The proof of statement (5) is a standard argument, using the W ∩ T /F factorization of
statement (4) and the 2 of 3 property of W to show that any map in W ∩ C is a retract of a
map in T . The proof of statement (6) is similar, using the C ∩M/W ∩F factorization of
statement (4) to show that any map in C is a retract of a map in M. �

11. Continuous functors and analytic monads

This section addresses the homotopy theory of analytically complete objects equipped
with algebraic structure. We focus on commutative R-algebras whose underlying R-module
is p-analytically complete, for some tame sequence p.

11.1. Continuous functors. Fix a commutative ring R, and a sequence p = (p1, . . . , pr) in
R. Let F : ModR → C be a (possibly non-additive) functor to some category C. We say that
F is continuous if

Fηp : F → FAp
is a natural isomorphism. It is immediate that if F is continuous, then the functor F factors
up to isomorphism as

Mod
Ap

−−→ M̂odp
F |M̂odp

−−−−−→ C.
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11.2. Example. Let M be an R-module. Then the functor F : ModR → M̂odp defined by

F (N) = Ap(M ⊗N) is continuous, by (6.2).

11.3. Example. Let M be an R-module. Then the functor F : ModR → M̂odp defined by

F (N) = ApHomR(M,N) is not necessarily continuous (though it is continuous if, for instance,

M is projective). For an example, consider R = Z, M = Z/p, and N = Z/p∞, with p = (p)
for a prime p.

11.4. Analytic monads. Given a monad (T, u,m), we write AlgT for its category of algebras.
Let p be a finite sequence in R, and write A = Ap and η = ηp : I → A. Suppose that

(T, u : I → T,m : TT → T ) is a monad on Mod = ModR; we will write AlgT for the category
of T -algebras.

Define

T̂ = AT, û = (ηT ) ◦ u = (Au) ◦ η : I → T̂ , m̂ = (Am) ◦ (ATηT )−1 : T̂ T̂ → T̂ .

11.5. Proposition. Let (T, u,m) be a monad on Mod such that AT is a continous functor.
Then we have the following.

(1) The data (T̂ , û, m̂) is also a monad on Mod.

(2) The map ηT : T → AT = T̂ is a morphism of monads, and thus induces a forgetful
functor U : Alg

T̂
→ AlgT on categories of algebras.

(3) The functor U : Alg
T̂
→ AlgT admits a left adjoint A : AlgT → Alg

T̂
, which is

defined by by sending a T -algebra (X,ψ : TX → X) to (X, ψ̂ : T̂X → X), where

ψ̂ = (Aψ) ◦ (ATη)−1.
(4) The counit map A ◦ U → id is a natural isomorphism, and hence U induces an

equivalence between Alg
T̂

and the full subcategory of AlgT consisting of objects whose
underlying R-module is analytic.

Proof. For claim (1), it suffices to show that m̂◦(T̂ m̂) = m̂◦(m̂T̂ ) and m̂◦(T̂ û) = id = m̂◦(ûT̂ ),
which is a straightforward verification of the commutative diagrams

ATAT AATAuAToo ATATAT ATTAT AmAT//
ATηATAT
oo ATAT

AT ATu //

id $$

ATT

ATηT

OO

Am
��

ATAuToo

AηT=ηAT

OO

idyy

ATATT

ATAm
��

ATATηT

OO

ATTT AmT //

ATm
��

ATηTT
oo

ATTηT

OO

ATT

Am
��

ATηT

OO

AT ATAT ATT Am //
ATηT
oo AT

Claim (2), that ηT → T̂ is map of monads is also a straightforward verification.

To prove claim (3), first note that the given definition of A actually produces a T̂ -algebra,
via the commutative diagrams

ATAX AAXAuAoo ATATAX ATTAX AmA //ATηATA
oo ATAX

ATX

ATη

OO

Aψ
��

AXAuoo

Aη=ηA

OO

idyy

ATATX
ATAψ
��

ATATη

OO

ATTX Am //

ATψ
��

ATηT
oo

ATTη

OO

ATX
Aψ
��

ATη

OO

AX ATAX ATX
Aψ

//
ATηX
oo AX

It is straightforward to verify the desired adjunction.
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That the counit A ◦ U → id is an isomorphism is also a straightforward verification. It is
also clear from the construction of A that the unit map U ◦ A → id induces an isomorphism
on a given T -algebra (X,ψ) if and only if X is analytic. Claim (4) follows. �

We say that (T, η, µ) is a analytic monad on ModR (with respect to a sequence p) if the
underlying functor AT is continuous, and therefore satisfies the conclusions of (11.5).

11.6. Simplicial algebras for an analytic monad. As above, let p be a finite sequence in a
commutative ring R, and write A = Ap for the analytic completion functor on Mod = ModR.

Fix a p-analytic monad (T, η, µ) on Mod. Assume that the functor T preserves reflexive co-

equalizers in Mod; as a consequence, the functor T̂ = AT also preserves reflexive coequalizers,
since A is right exact. It is a standard consequence of this assumption that AlgT and Alg

T̂
are complete and cocomplete, and that the forgetful functors AlgT → Mod and Alg

T̂
→ Mod

preserve and reflect reflexive coequalizers.
A morphism X → Y in a complete and cocomplete category C is called an effective

epimorphism if the projection pair X×Y X ⇒ X → Y is a coequalizer in C. A projective
object in C is an object P such that HomC(P, f) is surjective whenever f is an effective
epimorphism. We say C has enough projectives if for every object A in C there exists an
effective epimorphsm P → A where P is projective.

It is clear that effective epimorphisms in Mod are precisely the surjections, and the
projectives are the projective modules. Because the forgetful functors AlgT → Mod and
Alg

T̂
→ Mod preserve and create reflexive coequalizers and pullbacks, this implies that

effective epimorphisms in AlgT and Alg
T̂

are precisely maps which are surjective. Projectives
in AlgT are retracts of free T -algebras T (P ) on projective R-modules P , and projectives in

Alg
T̂

are retracts of free T̂ -algebras T̂P on projective R-modules P . It is clear that both
AlgT and Alg

T̂
have enough projectives.

11.7. Proposition. Suppose (T, u,m) is an analytic monad on ModR such that the functor
T : ModR → ModR preserves reflexive coequalizers. Then there exist simplical closed model
category structures on sAlgT and sAlg

T̂
, so that a morphism f in either category is a fibration

(resp. weak equivalence) if the underlying map of simplicial sets is a fibration (resp. a weak
equivalence). The evident adjoint functors

A : sAlgT ⇒ sAlg
T̂

:U

define a Quillen pair.

Proof. This is immediate from case (*) of [Qui67, Theorem II.4.4]. �

11.8. Remark. We note here that the proof of (11.7) implies that any cofibrant object in
sAlgT is degreewise projective in AlgT , and therefore in each degree is a retract of an free
T -algebra T (P ), where P is a projective R-module. Likewise, any cofibrant object in sAlg

T̂

is degreewise projective in Alg
T̂

, and therefore in each degree is a retract of an free T̂ -algebra

T̂ (P ), where P is a projective R-module.

11.9. Proposition. Suppose that p is a tame sequence in R, and that (T, u,m) is a p-analytic
monad on ModR which preserves reflexive coequalizers, and is such that the free T -algebra
T (P ) is a projective R-module for every projective R-module P . Then the Quillen pair of the
above proposition has the property that the right adjoint of

LA : h(sAlgT ) � h(sAlg
T̂

) : RU

is fully faithful, with essential image the simplicial T -algebras B such that π∗B is p-analytic.
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Proof. It suffices to show that LA ◦RU → I is a natural isomorphism. Given Y in sAlg
T̂

,
choose a cofibrant object X in sAlgT together with a weak equivalence f : X → U(Y ). We

want to show that A(X)
A(f)−−−→ AU(Y ) ≈ Y is a quasi-isomorphism, which amounts to showing

that the underlying map A(X)→ A(Y ) ≈ Y of simplicial R-modules is a quasi-isomorphism.
Because p is tame and X is degreewise a projective R-module, and π∗X ≈ π∗Y are

p-analytic, (9.8) implies that X → A(X) is a quasi-isomorphism. Thus the claim follows. �

11.10. Commutative rings. Fix a commutative ring R, together with a tame sequence p.
Let T be the “non-unital commutative R-algebra” monad on ModR, which satisfies

T (M) =
⊕

k≥1M
⊗Rk
Σk

. The category AlgT is precisely the category of non-unital commutative
R-algebras. Note that this category is equivalent to the category of augmented unital
commutative R-algebras; to a non-unital algebra B, associate the unital algebra R×B. We
write CommR for this category.

It follows from (6.2) that T is a p-analytic monad, and therefore we obtain a monad

T̂ = AT whose algebras are non-unital commutative R-algebras whose underlying R-module

is analytic. We write ĈommR for this category.
Furthermore, T preserves reflexive coequalizers, and T (P ) is a projective R-module when

P is projective. Therefore by (11.7), we obtain simplicial model categories related by a
Quillen pair

A : sCommR � sĈommR :U.

It is convenient to write A for the composite UA : sCommR → sĈommR, and η : I → A for
the unit map, since this describes how the functor behaves on the underlying R-modules.

Let Q : CommR → ModR be the indecomposables functor. It is left adjoint to the “square-
zero” functor ModR → CommR.

11.11. Proposition. For any non-unital commutative R-algebra B, we have that

AQη : AQ(B)→ AQA(B)

is an isomorphism.

Proof. We have a diagram

B ⊗B //

η⊗η
��

B //

η

��

Q(B) //

Q(η)

��

0

AB ⊗AB // AB // Q(AB) // 0

with exact rows. After appyling A to this diagram, the rows remain exact, and the maps
A(η ⊗ η) and A(η) are isomorphisms by (6.2). �

In other words, the functor Q̂ = AQ : CommR → M̂odR is continuous. We write

Q̂′ : Ĉomm→ M̂odR for the factorization of Q̂ through the completion functor A.

11.12. Proposition. We have a commutative square of Quillen pairs, whose diagram of left
adjoints is

sCommR
A //

Q

��

sĈommR

Q̂′
��

sModR A
// sM̂odR

Proof. Commutativity up to natural isomorphism is given by (11.11). �
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11.13. Quillen homology. The Quillen homology groups of a simplicial augmented
commutative R-algebra are the left derived functors of the indecomposables functor
sCommR → sModR:

HQ
m(B) = πm(LQ(B)).

The p-analytic Quillen homology of a simplicial augmented commutative R-algebra are

the left derived functors of the completed indecomposables functor Q̂ : sComm→ sM̂odR,p:

HQ̂
m(B) = πm(LQ̂(B)).

We can also consider the derived functors of Q̂′ : sĈommR → sM̂odR, but these are not any
different.

11.14. Proposition. If B ∈ sĈommR and if U(B) ∈ sCommR denotes the underlying object,

then (LQ̂′)(B) ≈ (LQ̂)(UB).

Proof. If P → U(B) is a cofibrant resolution in sCommR, then A(P ) → B is a cofibrant

resolution in sĈommR. The result follows from (11.11). �

11.15. Proposition. There is a composite functor spectral sequence

E2
ij = LiA(HQ

j (B)) =⇒ HQ̂
i+j(B).

Proof. If P → B is a cofibrant resolution, then Q(P ) is degreewise projective, and hence
degreewise tame, in which case we have the spectral sequence (9.8). �

11.16. Corollary. If B a simplicial R-algebra such that HQ
∗ (B) is tame, then

HQ̂
∗ (B) ≈ A(HQ

∗ (B)).
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