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Part I: What are power operations?

h* = multiplicative cohomology theory: hP(X) ® h(X) — hPT9(X).
m-th power map:

x = x"M: h(X) — hM(X).

If h comes from a structured commutative ring spectrum, refine m-th
power map to P™:

RO(X x BX )
m T
P l[*aszm]

ho(X) ——— h°(X)

e P, is multiplicative, not additive.
e Pairing with a € ho(BX,,) gives an operation Q,: h°(X) — ho(X).
e Q. is additive iff o € Primitives of @, ho(BX ).
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Power operations from commutative R-algebras

R = commutative S-algebra.
M = an R-module. Note: [R, M]g =~ [S, M]s ~ moM.
Free commutative R-algebra on M:

PrM = \/ ]P)',QM% \/(M/\R"‘/\R M)th
~—_———
m=0 m>0 m times

commutative R-algebra A = algebra for the monad Pg, determined by

w:PrA — A
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Part |: How to build a power operation

A = commutative R-algebra.
e Choose a: S — PE(R) ~ R A BX}, (map of spectra).
@ Represent x € mpA by f,: R — A.
°

m IP'"(fX) m
R(R) — PR(A)

Remarks:
o Q,: moA — meA may not be additive or multiplicative.

e Can get Qu: mgA — T4 A from

a: YITR — PR(XIR) ~ R A BXIVm,
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Part |: Deformations & Morava E-theory

Let Gy = height n formal group over perfect field k, chark = p, n < occ.
Let R = complete local ring, 7: R — R/m.

A deformation of Gy to R is (G, i,):
o G a formal group over R,
@ i: k— R/m,

e 1. TG =5 i* Gy iso of formal groups over R/m.

Theorem (Lubin-Tate)

There is a universal example of a deformation of Gy, defined over
Eo ~ ka[[ul, 500y Un—l]]-

A\

Theorem (Morava; Hopkins-Miller)

Given Go/k, there is a corresponding even periodic commutative S-algebra
E = Eg,/k, whose formal group is the universal deformation of Go.

v
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Example 1: p-complete K-algebras [McClure]

K = complex K-theory spectrum.
p-complete K-algebra: commutative K-algebra A such that A = AQ.

K} is associated to universal deformation of Gm (height 1).

Operations on 7 of p-complete K-algebra (6-ring)
PP mpA — mpA such that
o YP(x + y) = PP(x) + ¢P(y).
° YP(1) =
o YP(xy) = W’(X)W’( )-
@ YP(x) = xP mod p. : mgA — moA such that P (x) = xP + pO(x).

v

¥P and 6 correspond to elements of o € K{'BE .

def

KoX = mq (KAX)D) -

1P is the pth Adams operation.
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Example 2: Morava E-theory (n =2, p = 2)

e (y/F, = supersingular elliptic curve.
° 60 = formal completion — formal group of height 2.

@ E = Landweber exact spectrum associated to universal deformation
of C.
7T*E%Z2|[a]][u7 uil]v |a’ :Ov|u| =2

Note: K(2) is E/(2,a) (sort of).
e E is a commutative S-algebra (Hopkins-Miller Theorem).

Next slide: calculation of the algebraic structure of power operations for
K (2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).
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Example 2 (continued): Formulas

A = K(2)-local commutative E-algebra (mpA is an Ey = Z;[a]-algebra).

Operations on g of K(2)-local E-algebra
Qo, Q1, @>: mpA — mpA such that

o Qilx+y)=Qi(x)+ Qi(y)

Qo(aX) = 32 Qo(X) —2a Ql(X) +6 QQ(X)

° Ql(ax) =3 Qo(x) + a Q(x)

@2(ax) = —a Qo(x) + 3 Qu(x)
Q1 Qo(x) =2 Q2Q1(x) — 2 Qo Q@x(x)
@QQo(x) = QQ1(x) + a QuQ2(x) — 2 Q1 Q2(x)
o Qo(1)=1 Q1) =@(1)=0

Qo(xy) = QoxQoy + 2Q1xQay + 2QoxQry

(xy) = QoxQuy + QixQoy + aQ1xQoy + a@xQry + 2QoxQoy
(
(

®
o)

xy) = QoxQay + QoxQoy + QixQry + aQoxQay
o Qo(x)=x% mod2 6: myA — moA such that Qo(x) = x> + 20(x)
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Example 2 (continued): The ring of power operations

The ring ' of power operations

Associative ring containing Eg = Z[a] and generators Qu, Q1, Q2, and
subject to relations

Qa=a>Q —2aQ1 +6Q
Qra=3Q +a@
Pa=-aQ+3Q

Q1Q=2@Q1 —2QQ>
@R = Q@1 +3aQQ —2Q:1 Q>

[ has “admissible basis” as left Zy[a] module:
QQi Qi P20, jce{1,2)

Kashiwabara (1995): gives admissible basis for I' = I, Q7,41 T-
Problem: T is not a ring! (Kashiwabara knows this.)
He describes ring structure modulo indeterminacy.
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Example 2 (continued): Coproduct on I’

“Cartan formula” is encoded by a coproduct.

Cocommutative coalgebra structure on I’
e:T = Eand A: T — gl ® g by

€(Q) =1 €Q)=0=¢Q)

A(Q)=Q®Q+2Q1® @ +2Qx 0
AQ)=QQU+QxOQ+ai @@ +a@® Q1 +2Q:® Q2
A@)=Q3Q+RRQ+ Q@ +aQ® @

(e,M ® g,N means tensor using left-module structures.)
Coproduct and product “commute”.

I is a twisted bialgebra over Ey (like a Hopf algebra, but Egp isn't central).
Left M-modules have a symmetric monoidal tensor product: M ®g, N.
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Example 2: Summary

Definition

A T-ring is a commutative ring object in -modules.

Definition

An amplified I-ring is a [-ring B equipped with §: B — B such that
Qo(x) = x% + 20(x) (together with formulas for 0(x + y), O(xy), (ax)).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, moA naturally has the
structure of an amplified [-ring.
moLk)Pe(E) = Fé iy with F = free amplified I'-ring on one generator.

This can be extended to non-zero degrees:
A is a graded amplified '-ring, etc.
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Part |: The general pattern

This is the general pattern for any Morava E-theory spectrum.

Power operations for Morava E-theory (height n, prime p)
7y of a K(n)-local commutative E-algebra is a graded amplified I-ring:
o [ is a certain twisted bialgebra over Ep.
@ Qo €T and 6 such that Qp(x) = xP + pf(x).
o Tuly(mPe(XIE) =~ Fp,
F = free graded amplified [-ring on one generator in dim. g.

Questions / topics

@ How does the formal group of E produce I'? (Ando, Hopkins,
Strickland)

@ What is the algebraic structure of I'? (quadratic? Koszul?) (R.)
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Part |l: Formal groups and operations

E = even periodic ring spectrum = formal group Gg.

Formal group Gg of E

Formal scheme Gg = Spf(EOCP™) over moE.
Group law Gg x Gg — Gg defined by

p*: E°CP>® — EO(CP™ x CP*) ~ E°CP®®g, ECCP>.

p: CP* x CP* — CP*° classifies ® of line bundles.

Additive and multiplicative transformation of functors:

EO(X) — FO(X)

1* = homomorphism of formal groups over Fy,
where g = 1)1 E0(x) — FO(x).
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Part Il: Formal groups and power operations ( E-theory)

Go/k formal group of height n, E = Eg, /. Power map:
EOX —25 EO(X x BX,)
0 P™ . o 0
E°X — E (X) Xk E (Bzm)

EOX " EO(X) ®g, EQ(BEm) —— EX ®g, E°BY /1
Kiinneth isomorphism: E9BY , is finite and flat over Ey.
| is the “transfer ideal”:
I= Y Image [EOB(Z, X F ) ransfer, EOBzm}.
0<i<m
Proposition
TP™: E°X — E°X ®go E°BY,,,/! is a ring homomorphism.

Remark: E°BY,/I = 0 unless m = p".
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Part Il: The associated homomorphism

Let (Fpr)O(X) — EOX ®EO EOBZpr//,

Ring homomorphisms:

@ s*: Eg — (Fpr)o, induced by BY ,r — .

o t*: By — (Fpr)o, defined by 7PP": EO(x) — EO(x) ®g, EX(BX,r)/I.
The ring operation

TPPr

E%(X) —— (Fpr)°(X)
produces a homomorphism of formal groups defined over (Fpr)o.

What kind of homomorphism?
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Part IlI: Deformations of Frobenius

Frobenius. ¢: k — k defined by ¢(x) = xP.
Relative Frobenius. Frob: Gy — ¢*Gg.

Definition
A deformation of Frobenius (G,i,v) — (G',i’,v') (of deformations of
Go to R) is a homomorphism f: G — G’ of formal groups over R, such
that

*(f
W*G#W*G/

R/m
RN
&

G ———— it
0 ™ (Frobr) ! Go

commute for some r > 0.
(m: R — R/m.)

Remark: Deformations of Frobenius with domain (G, i,1) correspond
exactly to finite subgroup schemes of G. (f ~» Ker(f) C G.)
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Part II: Descent (Ando-Hopkins-Strickland (mid 90s?))

D(R) = {Objects: deformations (G, i, ) of Go/k to R,
Morphisms: deformations of Frobenius.
ffR—R =  f:D(R)— D(R).
Definition
A sheaf of modules M on D = {D(R)} consists of
e functors Mg: D(R)°P — Modg,
@ natural isomorphisms M¢: R’ @p Mg = Mg/ o f*,

satisfying obvious “coherence” axioms.
= symmetric monoidal category Modp of sheaves of modules.

Let [ = ring of additive power operations for E.
Thatis, I C @,,5 Eg' BXm consisting of a such that Q, is additive.

Equivalence Modp =~ Modr of symmetric monoidal categories.
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Part Il: Strickland’s Theorem

Operations 7PP": EO(X) — (F,r)°(X) == homomorphism of formal
groups (TPP")*: s*Gg — t*GE over (Fpr)o.
Theorem depends on the following.

The homomorphism (7Pp)*: s*Gg — t*Gg over (Fpr)o is the universal
example of a deformation of Frob" between deformations of Gy.

(Deformations G — G’ of Frob") <= (subgroups H C G of rank p").

Result amounts to:

Theorem (Strickland (1998))

The data (s* Gg, Ker(7Pyr)*) over (Fyr)o = E°BX /1 is the universal
example of a pair (G, H) consisting of a deformation G of Gy and a finite
subgroup scheme H C G of rank p".
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Part Il: The ring [ of power operations

Recall: I = ring of power operations for E = Eg, -

[ C ,, ESBE is the submodule of primitives.
[=@,T, where T, C E{BY,.

Each I, is a finitely generated free Eg-module, and

E°BY /I ~ Homg, (T, Eo).

Each T, is a cocommutative coalgebra < product on E°BY - /I.

Associative product 'y ®g, [',v — I,y < composition of power
operations.

Warning: Ey is not in the center of I'.

Charles Rezk (UIUC) Power operations March 24, 2010 19 / 33



Part Ill: Koszul algebras

A=, Ar graded associative ring, Ag = R commutative.

A is Koszul if there exist R-modules C, with C; = R, and an exact
sequence (a “Koszul complex”)

ARG L ARRG L ARG L ARRG L R0

of left A-modules such that d raises degree by 1.

If Ais Koszul, then

Ax TR(Al)/(U), Uc A

(i.e., Ais "quadratic”.)
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Part I1l: Koszul algebras (Example 2)

e Back to the example: '~ @I, = Tg,(I'1)/(U), where
M = Eo{Qo, @1, @2}, U = Adem relations.
Note: I'1 is an Ep-bimodule; right Eg-module structure is determined

by formulas Q;a = --- given earlier.

e PBW Theorem (Priddy (1970)): if [ has a “nice” admissible basis,
then I is Koszul.

o — Exact sequence.
0—>F®EO C2—>I'®EO G —T —E—D0.

C; are free modules over Ey: rank(C; = 3, rank G = 2.
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Part Ill: Is [ always Koszul?

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all E = Eg, k., the associated ring I' of power operations is Koszul.
The associated Koszul complex has the form

0-T®gCi— - =2IT®g G—T — E—0,

where n = height of G.

@ They developed a program to prove the result, using interesting ideas
about a kind of “Bruhat-Tits building” formed using flags of certain
finite subgroup schemes of Gg.

o | don't believe they ever completed their program; there may be no
obstruction to doing so, however.

@ There is another proof, which avoids using formal group theory; it
uses ideas related to the Whitehead conjecture (Kuhn, Mitchell,
Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).
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Part Ill: Linearization

Here are some of the ideas in the proof.

Definition
Given a (nonadditive) functor F: Modg, — Modg,, the linearization
L[F]: Modg, — Modg, is

F(7T1+7T2)
L[F](M) = Cok | F(M & M) - F(M)
F(m1)+F(m2)

L[F] is initial additive quotient functor of F.

v

In some cases, including ours, L[F o G] — L[F] o L[G] is an isomorphism.
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The free amplified I'-ring monad

e F: Modg, — Modg, the free amplified -ring functor.
@ M = an E-module; F(moM) “approximates”

WOLK(n)PE(M) ~ 7T0LK(,.,) \/(M NE -+ NE M)h):m
—_———

m .
m copies

@ More precisely: for E-module M with 7. M = flat E.-module
concentrated in even degree,

F(moM) ~ @ moLk(n)PE(M).
m>0

e Similarly, (Fo---o F)(moM) “approximates” my(Po --- o P)(M).
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Part Ill: Linearization of the amplified -ring monad

Apply linearization to Fo---o F.

LIF](Eo) = A.

A~@, A, where

B ~ Cok |@ocicpr B BT X Tpr i) — E{ BT,

A is a ring, non-canonically isomorphic to I'. (We actually show A is
Koszul.)

£[Fo ...... OF](EO):A®EO®E0 A
@ Monadic bar construction Be(F, F, F).

L[Bo(F,F,F)] = Bo(A, A, D).
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Part Ill: Koszul rings and the bar construction

(Priddy 1970):
o If A is a graded ring, filter Bo(M, A, N) according to grading on A.
o A is Koszul if gr,Bs(Eo, A, Eg) has homology concentrated in degree
qg.
@ Koszul complex “is” the spectral sequence associated to this filtration
on Be(M, A, N); E? = chain complex.
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Part Ill: Partition complex

Bqo(F,F,F)(Eo) = (fo---oF) @ EQ (Kq(m)ps,,)-
(g + 2) times m=0

Ke(m) is the partition complex.

@ A partition of m = {1,..., m} is an equivalence relation E on m.
o Partitions ordered by refinement: E < E' < E finer than E'.

o
Ke(m) = nerve {poset of partitions of m} .

Ko(m) = {(Bo < E1 < - < E)).
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Part lll: Partition complex, continued

Apply linearization to partition description of Be(F, F, F) to get
Bo(A, A, A) = L[By(F, F, F)|(Eo) = €D Qm(Kq(m))
m>0

where

Qm(X) = Cok | B E¢(Xnizixzm ) — B (Xbx,) |

0<i<m

X is a set with X, action.
Facts about Q:

0 Qm(XIIY)~ Qm(X)® Qn(Y).
® Qm(Xm/H) =0 if H does not act transitively on m.
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Part IIl: Quotient of the partition complex

o Let Ko(m) = Ko(m)/KS(m), where

Ky(m) = {(Eo < --- < Eg) | Eo not finest or Eq not coarsest }.

@ Then
Bo(Eo, A, Eo) = @Qm(K

@ This is 0 unless m = p”, in which case we want to show:

grp Be(Eo, A, Eo) = Qu(Ke(p")) has H, concentrated in degree r.
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Part Ill: The idea of the proof

o Need to show Qpr(Ke(p")) has H. concentrated in degree r.

Ke(P") X Zpr/(Zp 0+ 1 Ep) —» Ke(p"),
where
U= U (Kelp) X (S0 T
ACS

max. ab. subgp.

e Can form analogous quotient Ue(p").

o Reduce to showing Q,r(Us(p")) is chain homotopy equivalent to a
complex concentrated in degree r.

o Claim: There is a ¥ ,r-equivariant homotopy equivalence
Ue(p") = X1 A'S", where X is some X ,r-set.
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Part Ill: Us(p") and the Tits building for GL(r,F,)

@ A C X, maximal abelian subgroup:
Ko(p")* = nerve { poset of subgroups of A }.

For A= (Z/p)", the quotient K4(p")” is (a 2-fold suspension of) the
Tits building for GL(r,F)).

* otherwise.

o) ~ {v s if A~ (Z/p),

A= (Z/p)" result is theorem of Solomon-Tits (1969).
Non-elementary A: can be shown in exactly the same way.

o Show Ul(p") = Xy A S" (X pr-equivariantly) by the same
“shellability” argument that Solomon-Tits use for K,(p")%/P)".
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Part Ill: End of the proof

@ The “shellability” argument gives an explicit chain homotopy
H: id ~ f of maps of normalized chain complexes

NQyr (Ua(p")) — NQur (Us(p")), where

f =0 when e #£ r.

HKR = Qpr(Kg(p) A T /55 ) = Qur (Ua(p)) @ (p-torsion).

Get chain homotopy H': id ~ f" on NQu(Ke(p") A X, /Z" )) by
“extending by 0", so that

pla&ef’ = 0 when o % r.

NQpr(Ka(p")) is retract of NQur(Ke(p") A Xpr /%y ) (transfer), and
is p-torsion free.

o Get desired chain homotopy H": id ~ " on NQ,r(Ke(p")), with
1 =0 ifo#r.
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e end
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