Power operations in Morava E-theory

Charles Rezk

University of Illinois at Urbana-Champaign
March 24, 2010

http://www.math.uiuc.edu/~rezk/baltimore-2010-power-ops-handout.pdf

Part I: What are power operations?

$h^{*}=$ multiplicative cohomology theory: $h^{p}(X) \otimes h^{q}(X) \rightarrow h^{p+q}(X)$. m-th power map:

$$
x \mapsto x^{m}: h^{q}(X) \rightarrow h^{m q}(X)
$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^{m} :

$$
h^{0}(X) \xrightarrow[x \mapsto x^{m}]{\substack{P^{m}}} h^{0}(X)
$$

- P_{m} is multiplicative, not additive.
- Pairing with $\alpha \in h_{0}\left(B \Sigma_{m}\right)$ gives an operation $Q_{\alpha}: h^{0}(X) \rightarrow h^{0}(X)$.
- Q_{α} is additive iff $\alpha \in$ Primitives of $\bigoplus_{m} h_{0}\left(B \Sigma_{m}\right)$.

Power operations from commutative R-algebras

$R=$ commutative S-algebra.
$M=$ an R-module. Note: $[R, M]_{R} \approx[S, M]_{S} \approx \pi_{0} M$.
Free commutative R-algebra on M :

$$
\mathbb{P}_{R} M=\bigvee_{m \geq 0} \mathbb{P}_{R}^{m} M \approx \bigvee_{m \geq 0}(\underbrace{M \wedge_{R} \cdots \wedge_{R} M}_{m \text { times }})_{h \Sigma_{m}}
$$

commutative R-algebra $A=$ algebra for the monad \mathbb{P}_{R}, determined by

$$
\mu: \mathbb{P}_{R} A \rightarrow A
$$

Part I: How to build a power operation

$A=$ commutative R-algebra.

- Choose $\alpha: S \rightarrow \mathbb{P}_{R}^{m}(R) \approx R \wedge B \Sigma_{m}^{+}$(map of spectra).
- Represent $x \in \pi_{0} A$ by $f_{x}: R \rightarrow A$.

$$
\mathbb{P}_{R}^{m}(R) \xrightarrow{\mathbb{P}_{R}^{m}\left(f_{x}\right)} \mathbb{P}_{R}^{m}(A)
$$

Remarks:

- $Q_{\alpha}: \pi_{0} A \rightarrow \pi_{0} A$ may not be additive or multiplicative.
- Can get $Q_{\alpha}: \pi_{q} A \rightarrow \pi_{q+r} A$ from

$$
\alpha: \Sigma^{q+r} R \rightarrow \mathbb{P}_{R}^{m}\left(\Sigma^{q} R\right) \approx R \wedge B \Sigma_{m}^{q V_{m}} .
$$

Part I: Deformations \& Morava E-theory

Let $G_{0}=$ height n formal group over perfect field k, char $k=p, n<\infty$.
Let $R=$ complete local ring, $\pi: R \rightarrow R / \mathfrak{m}$.

Definition

A deformation of G_{0} to R is (G, i, ψ) :

- G a formal group over R,
- $i: k \rightarrow R / \mathfrak{m}$,
- $\psi: \pi^{*} G \xrightarrow{\sim} i^{*} G_{0}$ iso of formal groups over R / \mathfrak{m}.

Theorem (Lubin-Tate)

There is a universal example of a deformation of G_{0}, defined over $E_{0} \approx \mathbb{W}_{p} k \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$.

Theorem (Morava; Hopkins-Miller)

Given G_{0} / k, there is a corresponding even periodic commutative S-algebra $E=E_{G_{0} / k}$, whose formal group is the universal deformation of G_{0}.

Example 1: p-complete K-algebras [McClure]

$K=$ complex K-theory spectrum.
p-complete K-algebra: commutative K-algebra A such that $A \approx A_{p}^{\wedge}$. K_{p}^{\wedge} is associated to universal deformation of \widehat{G}_{m} (height 1).

Operations on π_{0} of p-complete K-algebra (θ-ring)

$\psi^{p}: \pi_{0} A \rightarrow \pi_{0} A$ such that

- $\psi^{p}(x+y)=\psi^{p}(x)+\psi^{p}(y)$.
- $\psi^{p}(1)=1$.
- $\psi^{p}(x y)=\psi^{p}(x) \psi^{p}(y)$.
- $\psi^{p}(x) \equiv x^{p} \bmod p . \theta: \pi_{0} A \rightarrow \pi_{0} A$ such that $\psi^{p}(x)=x^{p}+p \theta(x)$.
ψ^{p} and θ correspond to elements of $\alpha \in K_{0}^{\wedge} B \Sigma_{p}$.

$$
K_{q}^{\wedge} X \stackrel{\text { def }}{=} \pi_{q}\left((K \wedge X)_{p}^{\wedge}\right)
$$

ψ^{p} is the p th Adams operation.

- $C_{0} / \mathbb{F}_{2}=$ supersingular elliptic curve.
- $\widehat{C}_{0}=$ formal completion - formal group of height 2 .
- $E=$ Landweber exact spectrum associated to universal deformation of \widehat{C}.

$$
\pi_{*} E \approx \mathbb{Z}_{2} \llbracket a \rrbracket\left[u, u^{-1}\right], \quad|a|=0,|u|=2
$$

Note: $K(2)$ is $E /(2, a)$ (sort of).

- E is a commutative S-algebra (Hopkins-Miller Theorem).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Example 2 (continued): Formulas

$A=K(2)$-local commutative E-algebra ($\pi_{0} A$ is an $E_{0}=\mathbb{Z}_{2} \llbracket a \rrbracket$-algebra).

Operations on π_{0} of $K(2)$-local E-algebra

$Q_{0}, Q_{1}, Q_{2}: \pi_{0} A \rightarrow \pi_{0} A$ such that

- $Q_{i}(x+y)=Q_{i}(x)+Q_{i}(y)$

$$
Q_{0}(a x)=a^{2} Q_{0}(x)-2 a Q_{1}(x)+6 Q_{2}(x)
$$

- $Q_{1}(a x)=3 Q_{0}(x)+a Q_{2}(x)$
$Q_{2}(a x)=-a Q_{0}(x)+3 Q_{1}(x)$
$Q_{1} Q_{0}(x)=2 Q_{2} Q_{1}(x)-2 Q_{0} Q_{2}(x)$
$Q_{2} Q_{0}(x)=Q_{0} Q_{1}(x)+a Q_{0} Q_{2}(x)-2 Q_{1} Q_{2}(x)$
- $Q_{0}(1)=1, Q_{1}(1)=Q_{2}(1)=0$
$Q_{0}(x y)=Q_{0} x Q_{0} y+2 Q_{1} x Q_{2} y+2 Q_{2} x Q_{1} y$
- $Q_{1}(x y)=Q_{0} x Q_{1} y+Q_{1} \times Q_{0} y+a Q_{1} \times Q_{2} y+a Q_{2} \times Q_{1} y+2 Q_{2} \times Q_{2} y$
$Q_{2}(x y)=Q_{0} x Q_{2} y+Q_{2} \times Q_{0} y+Q_{1} \times Q_{1} y+a Q_{2} x Q_{2} y$
- $Q_{0}(x) \equiv x^{2} \bmod 2 \quad \theta: \pi_{0} A \rightarrow \pi_{0} A$ such that $Q_{0}(x)=x^{2}+2 \theta(x)$

Example 2 (continued): The ring of power operations

The ring Γ of power operations

Associative ring containing $E_{0}=\mathbb{Z}_{2} \llbracket a \rrbracket$ and generators Q_{0}, Q_{1}, Q_{2}, and subject to relations

$$
\begin{array}{ll}
Q_{0} a=a^{2} Q_{0}-2 a Q_{1}+6 Q_{2} & Q_{1} Q_{0}=2 Q_{2} Q_{1}-2 Q_{0} Q_{2} \\
Q_{1} a=3 Q_{0}+a Q_{2} & Q_{2} Q_{0}=Q_{0} Q_{1}+a Q_{0} Q_{2}-2 Q_{1} Q_{2} \\
Q_{2} a=-a Q_{0}+3 Q_{1} &
\end{array}
$$

Γ has "admissible basis" as left $\mathbb{Z}_{2} \llbracket a \rrbracket$ module:

$$
Q_{0}^{i} Q_{j_{1}} \cdots Q_{j r}, \quad i \geq 0, j_{k} \in\{1,2\}
$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma}=\mathbb{F}_{2} \otimes_{\mathbb{Z}_{2}[\llbracket]} \Gamma$. Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.) He describes ring structure modulo indeterminacy.

Example 2 (continued): Coproduct on 「

"Cartan formula" is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

$\epsilon: \Gamma \rightarrow E_{0}$ and $\Delta: \Gamma \rightarrow E_{0} \Gamma \otimes E_{0} \Gamma$ by

$$
\epsilon\left(Q_{0}\right)=1, \quad \epsilon\left(Q_{1}\right)=0=\epsilon\left(Q_{2}\right)
$$

$$
\begin{aligned}
& \Delta\left(Q_{0}\right)=Q_{0} \otimes Q_{0}+2 Q_{1} \otimes Q_{2}+2 Q_{2} \otimes Q_{1} \\
& \Delta\left(Q_{1}\right)=Q_{0} \otimes Q_{1}+Q_{1} \otimes Q_{0}+a Q_{1} \otimes Q_{2}+a Q_{2} \otimes Q_{1}+2 Q_{2} \otimes Q_{2} \\
& \Delta\left(Q_{2}\right)=Q_{0} \otimes Q_{2}+Q_{2} \otimes Q_{0}+Q_{1} \otimes Q_{1}+a Q_{2} \otimes Q_{2}
\end{aligned}
$$

($E_{0} M \otimes E_{0} N$ means tensor using left-module structures.)
Coproduct and product "commute".

Conclusion

Γ is a twisted bialgebra over E_{0} (like a Hopf algebra, but E_{0} isn't central). Left Γ-modules have a symmetric monoidal tensor product: $M \otimes_{E_{0}} N$.

Example 2: Summary

Definition

A Г-ring is a commutative ring object in Γ-modules.

Definition

An amplified Γ-ring is a Γ-ring B equipped with $\theta: B \rightarrow B$ such that $Q_{0}(x)=x^{2}+2 \theta(x)$ (together with formulas for $\left.\theta(x+y), \theta(x y), \theta(a x)\right)$.

In summary:

Proposition

For A a $K(2)$-local commutative E-algebra, $\pi_{0} A$ naturally has the structure of an amplified Γ-ring. $\pi_{0} L_{K(2)} \mathbb{P}_{E}(E) \approx F_{(2, a)}^{\wedge}$, with $F=$ free amplified Γ-ring on one generator.

This can be extended to non-zero degrees:
$\pi_{*} A$ is a graded amplified 「-ring, etc.

Part I: The general pattern

This is the general pattern for any Morava E-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

π_{*} of a $K(n)$-local commutative E-algebra is a graded amplified Γ-ring:

- Γ is a certain twisted bialgebra over E_{0}.
- $Q_{0} \in \Gamma$ and θ such that $Q_{0}(x)=x^{p}+p \theta(x)$.
- $\pi_{*} L_{K(n)} \mathbb{P}_{E}\left(\Sigma^{q} E\right) \approx F_{\mathfrak{m}}^{\wedge}$,
$F=$ free graded amplified Γ-ring on one generator in dim. q.

Questions / topics

(1) How does the formal group of E produce 「? (Ando, Hopkins, Strickland)
(2) What is the algebraic structure of Г? (quadratic? Koszul?) (R.)

Part II: Formal groups and operations

$E=$ even periodic ring spectrum \Longrightarrow formal group G_{E}.

Formal group G_{E} of E

Formal scheme $G_{E}=\operatorname{Spf}\left(E^{0} \mathbb{C} P^{\infty}\right)$ over $\pi_{0} E$.
Group law $G_{E} \times G_{E} \rightarrow G_{E}$ defined by

$$
\mu^{*}: E^{0} \mathbb{C P}^{\infty} \rightarrow E^{0}\left(\mathbb{C P}{ }^{\infty} \times \mathbb{C} P^{\infty}\right) \approx E^{0} \mathbb{C P}^{\infty} \widehat{\otimes}_{E_{0}} E^{0} \mathbb{C P} \mathbb{P}^{\infty}
$$

$\mu: \mathbb{C P}^{\infty} \times \mathbb{C P}^{\infty} \rightarrow \mathbb{C P}^{\infty}$ classifies \otimes of line bundles.
Additive and multiplicative transformation of functors:

$$
E^{0}(X) \xrightarrow{\psi} F^{0}(X)
$$

$\psi^{*}=$ homomorphism of formal groups over F_{0}, where $g=\psi: E^{0}(*) \rightarrow F^{0}(*)$.

Part II: Formal groups and power operations (E-theory)

G_{0} / k formal group of height $n, E=E_{G_{0} / k}$. Power map:

$$
\begin{aligned}
& E^{0} X \xrightarrow{P^{m}} E^{0}\left(X \times B \Sigma_{m}\right) \\
& E^{0} X \xrightarrow{P^{m}} E^{0}(X) \otimes_{E_{0}} E^{0}\left(B \Sigma_{m}\right) \\
& E^{0} X \xrightarrow{P^{m}} E^{0}(X) \otimes_{E_{0}} E^{0}\left(B \Sigma_{m}\right) \xrightarrow{\tau} E^{0} X \otimes_{E_{0}} E^{0} B \Sigma_{m} / l
\end{aligned}
$$

Künneth isomorphism: $E^{0} B \Sigma_{m}$ is finite and flat over E_{0}. I is the "transfer ideal":

$$
I=\sum_{0<i<m} \text { Image }\left[E^{0} B\left(\Sigma_{i} \times \Sigma_{m-i}\right) \xrightarrow{\text { transfer }} E^{0} B \Sigma_{m}\right]
$$

Proposition

$\tau P^{m}: E^{0} X \rightarrow E^{0} X \otimes_{E^{0}} E^{0} B \Sigma_{m} / I$ is a ring homomorphism.
Remark: $E^{0} B \Sigma_{m} / I=0$ unless $m=p^{r}$.

Let $\left(F_{p^{r}}\right)^{0}(X)=E^{0} X \otimes_{E^{0}} E^{0} B \Sigma_{p^{r}} / I$.
Ring homomorphisms:

- $s^{*}: E_{0} \rightarrow\left(F_{p^{r}}\right)_{0}$, induced by $B \Sigma_{p^{r}} \rightarrow *$.
- $t^{*}: E_{0} \rightarrow\left(F_{p^{r}}\right)_{0}$, defined by $\tau P^{p^{r}}: E^{0}(*) \rightarrow E^{0}(*) \otimes_{E_{0}} E^{0}\left(B \Sigma_{p^{r}}\right) / I$.

The ring operation

$$
E^{0}(X) \xrightarrow{\tau P^{p^{r}}}\left(F_{p^{r}}\right)^{0}(X)
$$

produces a homomorphism of formal groups defined over $\left(F_{p^{r}}\right)_{0}$.
What kind of homomorphism?

Part II: Deformations of Frobenius

Frobenius. $\phi: k \rightarrow k$ defined by $\phi(x)=x^{p}$.
Relative Frobenius. Frob: $G_{0} \rightarrow \phi^{*} G_{0}$.

Definition

A deformation of Frobenius $(G, i, \psi) \rightarrow\left(G^{\prime}, i^{\prime}, \psi^{\prime}\right)$ (of deformations of G_{0} to R) is a homomorphism $f: G \rightarrow G^{\prime}$ of formal groups over R, such that

commute for some $r \geq 0$.
($\pi: R \rightarrow R / \mathfrak{m}$.
Remark: Deformations of Frobenius with domain (G, i, ψ) correspond exactly to finite subgroup schemes of $G .(f \rightsquigarrow \operatorname{Ker}(f) \subset G$.

Part II: Descent (Ando-Hopkins-Strickland (mid 90s?))

$\mathcal{D}(R)=\left\{\begin{array}{l}\text { Objects: deformations }(G, i, \phi) \text { of } G_{0} / k \text { to } R,\end{array}\right.$ Morphisms: deformations of Frobenius.
$f: R \rightarrow R^{\prime}$

$$
\Longrightarrow \quad f^{*}: \mathcal{D}(R) \rightarrow \mathcal{D}\left(R^{\prime}\right) .
$$

Definition

A sheaf of modules M on $\mathcal{D}=\{\mathcal{D}(R)\}$ consists of

- functors $M_{R}: \mathcal{D}(R)^{\mathrm{op}} \rightarrow \operatorname{Mod}_{R}$,
- natural isomorphisms $M_{f}: R^{\prime} \otimes_{R} M_{R} \xrightarrow{\sim} M_{R^{\prime}} \circ f^{*}$, satisfying obvious "coherence" axioms.
\Longrightarrow symmetric monoidal category $\operatorname{Mod}_{\mathcal{D}}$ of sheaves of modules.
Let $\Gamma=$ ring of additive power operations for E.
That is, $\Gamma \subset \bigoplus_{m \geq 0} E_{0}^{\wedge} B \Sigma_{m}$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\operatorname{Mod}_{\mathcal{D}} \approx \operatorname{Mod}_{\Gamma}$ of symmetric monoidal categories.

Operations $\tau P^{p^{r}}: E^{0}(X) \rightarrow\left(F_{p^{r}}\right)^{0}(X) \Longrightarrow$ homomorphism of formal groups $\left(\tau P^{p^{r}}\right)^{*}: s^{*} G_{E} \rightarrow t^{*} G_{E}$ over $\left(F_{p^{r}}\right)_{0}$.
Theorem depends on the following.

Claim

The homomorphism $\left(\tau P_{p^{r}}\right)^{*}: s^{*} G_{E} \rightarrow t^{*} G_{E}$ over $\left(F_{p^{r}}\right)_{0}$ is the universal example of a deformation of Frob^{r} between deformations of G_{0}.
(Deformations $G \rightarrow G^{\prime}$ of Frob $\left.^{r}\right) \Longleftrightarrow$ (subgroups $H \subset G$ of rank p^{r}).
Result amounts to:

Theorem (Strickland (1998))

The data $\left(s^{*} G_{E}, \operatorname{Ker}\left(\tau P_{p^{r}}\right)^{*}\right)$ over $\left(F_{p^{r}}\right)_{0}=E^{0} B \Sigma_{p^{r}} / /$ is the universal example of a pair (G, H) consisting of a deformation G of G_{0} and a finite subgroup scheme $H \subset G$ of rank p^{r}.

Recall: $\Gamma=$ ring of power operations for $E=E_{G_{0} / k}$.

- $\Gamma \subset \bigoplus_{m} E_{0}^{\wedge} B \Sigma_{m}$ is the submodule of primitives.
- $\Gamma=\bigoplus_{r} \Gamma_{r}$, where $\Gamma_{r} \subset E_{0}^{\wedge} B \Sigma_{p^{r}}$.
- Each Γ_{r} is a finitely generated free E_{0}-module, and

$$
E^{0} B \Sigma_{p^{r}} / I \approx \operatorname{Hom}_{E_{0}}\left(\Gamma_{r}, E_{0}\right)
$$

- Each Γ_{r} is a cocommutative coalgebra \Leftrightarrow product on $E^{0} B \Sigma_{p^{r}} / I$.
- Associative product $\Gamma_{r} \otimes_{E_{0}} \Gamma_{r^{\prime}} \rightarrow \Gamma_{r+r^{\prime}} \Leftrightarrow$ composition of power operations.
- Warning: E_{0} is not in the center of Γ.

Part III: Koszul algebras

$A=\bigoplus_{r \geq 0} A_{r}$ graded associative ring, $A_{0}=R$ commutative.

Definition

A is Koszul if there exist R-modules C_{r} with $C_{0}=R$, and an exact sequence (a "Koszul complex")

$$
\cdots \xrightarrow{d} A \otimes_{R} C_{3} \xrightarrow{d} A \otimes_{R} C_{2} \xrightarrow{d} A \otimes_{R} C_{1} \xrightarrow{d} A \otimes_{R} C_{0} \xrightarrow{d} R \rightarrow 0
$$

of left A-modules such that d raises degree by 1 .

Fact

If A is Koszul, then

$$
A \approx T_{R}\left(A_{1}\right) /(U), \quad U \subset A_{2}
$$

(i.e., A is "quadratic".)

- Back to the example: $\Gamma \approx \bigoplus \Gamma_{r} \approx T_{E_{0}}\left(\Gamma_{1}\right) /(U)$, where $\Gamma_{1}=E_{0}\left\{Q_{0}, Q_{1}, Q_{2}\right\}, U=$ Adem relations. Note: Γ_{1} is an E_{0}-bimodule; right E_{0}-module structure is determined by formulas $Q_{i} a=\cdots$ given earlier.
- PBW Theorem (Priddy (1970)): if Γ has a "nice" admissible basis, then Γ is Koszul.
- \Longrightarrow Exact sequence.

$$
0 \rightarrow \Gamma \otimes_{E_{0}} C_{2} \rightarrow \Gamma \otimes_{E_{0}} C_{1} \rightarrow \Gamma \rightarrow E_{0} \rightarrow 0
$$

C_{i} are free modules over $E_{0}: \operatorname{rank} C_{1}=3, \operatorname{rank} C_{2}=2$.

Part III: Is Г always Koszul?

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E=E_{G_{0} / k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$
0 \rightarrow \Gamma \otimes_{E_{0}} C_{n} \rightarrow \cdots \rightarrow \Gamma \otimes_{E_{0}} C_{1} \rightarrow \Gamma \rightarrow E_{0} \rightarrow 0
$$

where $n=$ height of G_{0}.

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_{E}.
- I don't believe they ever completed their program; there may be no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Here are some of the ideas in the proof.

Definition

Given a (nonadditive) functor $F: \operatorname{Mod}_{E_{0}} \rightarrow \operatorname{Mod}_{E_{0}}$, the linearization $\mathcal{L}[F]: \operatorname{Mod}_{E_{0}} \rightarrow \operatorname{Mod}_{E_{0}}$ is

$$
\mathcal{L}[F](M)=\operatorname{Cok}\left[F(M \oplus M) \underset{F\left(\pi_{1}\right)+F\left(\pi_{2}\right)}{\stackrel{F\left(\pi_{1}+\pi_{2}\right)}{\longrightarrow}} F(M)\right] .
$$

$\mathcal{L}[F]$ is initial additive quotient functor of F.
In some cases, including ours, $\mathcal{L}[F \circ G] \rightarrow \mathcal{L}[F] \circ \mathcal{L}[G]$ is an isomorphism.

- $F: \operatorname{Mod}_{E_{0}} \rightarrow \operatorname{Mod}_{E_{0}}$ the free amplified Γ-ring functor.
- $M=$ an E-module; $F\left(\pi_{0} M\right)$ "approximates"

$$
\pi_{0} L_{K(n)} \mathbb{P}_{E}(M) \approx \pi_{0} L_{K(n)}(\bigvee_{m}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{m \text { copies }})_{h \Sigma_{m}})
$$

- More precisely: for E-module M with $\pi_{*} M=$ flat E_{*}-module concentrated in even degree,

$$
F\left(\pi_{0} M\right) \approx \bigoplus_{m \geq 0} \pi_{0} L_{K(n)} \mathbb{P}_{E}^{m}(M)
$$

- Similarly, $(F \circ \cdots \circ F)\left(\pi_{0} M\right)$ "approximates" $\pi_{0}(\mathbb{P} \circ \cdots \circ \mathbb{P})(M)$.

Part III: Linearization of the amplified Γ-ring monad

Apply linearization to $F \circ \cdots \circ F$.

$$
\mathcal{L}[F]\left(E_{0}\right)=\Delta .
$$

$\Delta \approx \bigoplus_{r} \Delta_{r}$, where
$\Delta_{r} \approx \operatorname{Cok}\left[\bigoplus_{0<i<p^{r}} E_{0}^{\wedge} B\left(\Sigma_{i} \times \Sigma_{p^{r}-i}\right) \rightarrow E_{0}^{\wedge} B \Sigma_{p^{r}}\right]$.
Δ is a ring, non-canonically isomorphic to Γ. (We actually show Δ is Koszul.)

$$
\mathcal{L}[F \circ \cdots \cdots \circ F]\left(E_{0}\right)=\Delta \otimes_{E_{0}} \cdots \otimes_{E_{0}} \Delta .
$$

- Monadic bar construction $\mathcal{B} \bullet(F, F, F)$.

$$
\mathcal{L}\left[\mathcal{B}_{\bullet}(F, F, F)\right] \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta)
$$

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M, \Delta, N)$ according to grading on Δ.
- Δ is Koszul if $\operatorname{gr}_{q} \mathcal{B}_{\bullet}\left(E_{0}, \Delta, E_{0}\right)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on $\mathcal{B}_{\bullet}(M, \Delta, N) ; E_{1}^{p, q}=$ chain complex.

Part III: Partition complex

$$
\mathcal{B}_{q}(F, F, F)\left(E_{0}\right) \approx(\underset{(q+2) \text { times }}{F \circ \ldots \circ F})\left(E_{0}\right) \approx \bigoplus_{m \geq 0} E_{0}^{\wedge}\left(K_{q}(m)_{h \Sigma_{m}}\right) .
$$

$K_{\bullet}(m)$ is the partition complex.

- A partition of $\underline{m}=\{1, \ldots, m\}$ is an equivalence relation E on \underline{m}.
- Partitions ordered by refinement: $E \leq E^{\prime} \Leftrightarrow E$ finer than E^{\prime}.
-

$$
K_{\bullet}(m)=\text { nerve }\{\text { poset of partitions of } \underline{m}\} .
$$

$$
K_{q}(m)=\left\{\left(E_{0} \leq E_{1} \leq \cdots \leq E_{q}\right)\right\} .
$$

Apply linearization to partition description of $\mathcal{B}_{\bullet}(F, F, F)$ to get

$$
\mathcal{B}_{q}(\Delta, \Delta, \Delta) \approx \mathcal{L}\left[\mathcal{B}_{q}(F, F, F)\right]\left(E_{0}\right) \approx \bigoplus_{m \geq 0} Q_{m}\left(K_{q}(m)\right)
$$

where

$$
Q_{m}(X)=\operatorname{Cok}\left[\bigoplus_{0<i<m} E_{0}^{\wedge}\left(X_{h\left(\Sigma_{i} \times \Sigma_{m-i}\right)}\right) \rightarrow E_{0}^{\wedge}\left(X_{h \Sigma_{m}}\right)\right]
$$

X is a set with Σ_{m} action.
Facts about Q_{m} :

- $Q_{m}(X \amalg Y) \approx Q_{m}(X) \oplus Q_{m}(Y)$.
- $Q_{m}\left(\Sigma_{m} / H\right)=0$ if H does not act transitively on \underline{m}.
- Let $\bar{K}_{\bullet}(m)=K_{\bullet}(m) / K_{\bullet}^{\diamond}(m)$, where

$$
K_{q}^{\diamond}(m)=\left\{\left(E_{0} \leq \cdots \leq E_{q}\right) \mid E_{0} \text { not finest or } E_{q} \text { not coarsest }\right\} .
$$

- Then

$$
\mathcal{B}_{\bullet}\left(E_{0}, \Delta, E_{0}\right) \approx \bigoplus_{m} Q_{m}\left(\bar{K}_{\bullet}(m)\right)
$$

- This is 0 unless $m=p^{r}$, in which case we want to show:

$$
\operatorname{gr}_{p^{r}} \mathcal{B}_{\bullet}\left(E_{0}, \Delta, E_{0}\right) \approx Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right)\right) \text { has } H_{*} \text { concentrated in degree } r .
$$

Part III: The idea of the proof

- Need to show $Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right)\right)$ has H_{*} concentrated in degree r.

$$
\left.K_{\bullet}\left(p^{r}\right) \times \Sigma_{p^{r}} /\left(\Sigma_{p} \imath \cdots\right\rangle \Sigma_{p}\right) \longrightarrow K_{\bullet}\left(p^{r}\right),
$$

where

$$
U_{\bullet}\left(p^{r}\right)=\bigcup_{\substack{A \subset \Sigma_{p} r \\ \text { max. ab. subgp. }}}\left(K_{\bullet}\left(p^{r}\right) \times \Sigma_{p^{r}} /\left(\Sigma_{p} \imath \cdots \imath \Sigma_{p}\right)\right)^{A} .
$$

- Can form analogous quotient $\bar{U}_{\bullet}\left(p^{r}\right)$.
- Reduce to showing $Q_{p^{r}}\left(\bar{U}_{\bullet}\left(p^{r}\right)\right)$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a $\Sigma_{p^{r} \text {-equivariant homotopy equivalence }}$ $\bar{U}_{\bullet}\left(p^{r}\right) \approx X_{+} \wedge S^{r}$, where X is some $\Sigma_{p^{r} \text {-set. }}$
- $A \subset \Sigma_{p^{r}}$ maximal abelian subgroup:

$$
K_{\bullet}\left(p^{r}\right)^{A}=\text { nerve }\{\text { poset of subgroups of } A\}
$$

For $A \approx(\mathbb{Z} / p)^{r}$, the quotient $\bar{K}_{\bullet}\left(p^{r}\right)^{A}$ is (a 2-fold suspension of) the Tits building for $G L\left(r, \mathbb{F}_{p}\right)$.

$$
\bar{K}_{\bullet}\left(p^{r}\right)^{A} \approx \begin{cases}\bigvee S^{r} & \text { if } A \approx(\mathbb{Z} / p)^{r} \\ * & \text { otherwise }\end{cases}
$$

$A=(\mathbb{Z} / p)^{r}$ result is theorem of Solomon-Tits (1969).
Non-elementary A : can be shown in exactly the same way.

- Show $\bar{U}_{\bullet}\left(p^{r}\right) \approx X_{+} \wedge S^{r}\left(\Sigma_{p^{r} \text {-equivariantly }}\right)$ by the same "shellability" argument that Solomon-Tits use for $\bar{K}_{\bullet}\left(p^{r}\right)^{(\mathbb{Z} / p)^{r}}$.
- The "shellability" argument gives an explicit chain homotopy H : id $\sim f$ of maps of normalized chain complexes $N Q_{p^{r}}\left(\bar{U}_{\bullet}\left(p^{r}\right)\right) \rightarrow N Q_{p^{r}}\left(\bar{U}_{\bullet}\left(p^{r}\right)\right)$, where

$$
f=0 \text { when } \bullet \neq r .
$$

- $\mathrm{HKR} \Longrightarrow Q_{p^{r}}\left(\bar{K}_{q}\left(p^{r}\right) \wedge \Sigma_{p^{r}} / \Sigma_{p+}^{2 r}\right) \approx Q_{p^{r}}\left(\bar{U}_{q}\left(p^{r}\right)\right) \oplus(p$-torsion $)$.
- Get chain homotopy H^{\prime} : id $\sim f^{\prime}$ on $\left.N Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right) \wedge \Sigma_{p^{r}} / \Sigma_{p_{+}}^{2 r}\right)\right)$ by "extending by 0 ", so that

$$
p^{\text {large }} f^{\prime}=0 \text { when } \bullet \neq r
$$

- $N Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right)\right)$ is retract of $N Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right) \wedge \Sigma_{p^{r}} / \Sigma_{p_{+}}^{2 r}\right)$ (transfer), and is p-torsion free.
- Get desired chain homotopy $H^{\prime \prime}:$ id $\sim f^{\prime \prime}$ on $N Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right)\right)$, with $f^{\prime \prime}=0$ if $\bullet \neq r$.

http://www.math.uiuc.edu/~rezk/baltimore-2010-power-ops-handout.pdf

- Ando, "Isogenies of formal group laws and powen operations in the cohomology theories E_{n} ", Duke 1995.
- Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004; arXiv:math/0204053.
- Bruner, May, McClure, Steinberger, H_{∞} ring spectra and their applications, LNM 1176, 1986.
- Hovey, Strickland, Morava K-theories and localization, Mem. AMS 139, 1999.
- Kashiwabara, "K(2)-homology of some infinite loop spaces", Math. Z., 1995.
- Priddy, "Koszul resolutions", Trans. AMS, 1970.
- Rezk, "The units of a ring spectrum and a logarithmic cohomology operation", J. AMS, 2006; arXiv:math/0407022.
- Rezk, "Power operations for Morava E-theory of height 2 at the prime 2", arXiv:0812.1320.
- Rezk, "The congruence criterion for power operations in Morava E-theory", arXiv:0902.2499.
- Strickland, "Finite subgroups of formal groups", J. Pure Appl. Alg., 1997.
- Strickland, "Morava E-theory of symmetric groups", Topology, 1998; arXiv:math/9801125.
- Strickland, " $K(n)$-local duality for finite groups and groupoids", Topology, 2000; arXiv:math/0011109.

