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Part I: What are power operations?

h∗ = multiplicative cohomology theory: hp(X )⊗ hq(X )→ hp+q(X ).
m-th power map:

x 7→ xm : hq(X )→ hmq(X ).

If h comes from a structured commutative ring spectrum, refine m-th
power map to Pm:

h0(X × BΣm)

[∗→BΣm]
��

h0(X )
x 7→xm

//

Pm
88

h0(X )

Pm is multiplicative, not additive.

Pairing with α ∈ h0(BΣm) gives an operation Qα : h0(X )→ h0(X ).

Qα is additive iff α ∈ Primitives of
⊕

m h0(BΣm).
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Power operations from commutative R-algebras

R = commutative S-algebra.
M = an R-module. Note: [R,M]R ≈ [S ,M]S ≈ π0M.
Free commutative R-algebra on M:

PRM =
∨
m≥0

Pm
R M ≈

∨
m≥0

(M ∧R · · · ∧R M︸ ︷︷ ︸
m times

)hΣm

commutative R-algebra A = algebra for the monad PR , determined by

µ : PRA→ A.
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Part I: How to build a power operation

A = commutative R-algebra.

Choose α : S → Pm
R (R) ≈ R ∧ BΣ+

m (map of spectra).

Represent x ∈ π0A by fx : R → A.

Pm
R (R)

Pm
R (fx )
−−−−→ Pm

R (A)

Remarks:

Qα : π0A→ π0A may not be additive or multiplicative.

Can get Qα : πqA→ πq+r A from

α : Σq+r R → Pm
R (ΣqR) ≈ R ∧ BΣqVm

m .
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Part I: Deformations & Morava E -theory

Let G0 = height n formal group over perfect field k , chark = p, n <∞.
Let R = complete local ring, π : R → R/m.

Definition

A deformation of G0 to R is (G , i , ψ):

G a formal group over R,

i : k → R/m,

ψ : π∗G
∼−→ i∗G0 iso of formal groups over R/m.

Theorem (Lubin-Tate)

There is a universal example of a deformation of G0, defined over
E0 ≈Wpk[[u1, . . . , un−1]].

Theorem (Morava; Hopkins-Miller)

Given G0/k, there is a corresponding even periodic commutative S-algebra
E = EG0/k , whose formal group is the universal deformation of G0.
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Example 1: p-complete K -algebras [McClure]

K = complex K -theory spectrum.
p-complete K -algebra: commutative K -algebra A such that A ≈ A∧p .

K∧p is associated to universal deformation of Ĝm (height 1).

Operations on π0 of p-complete K -algebra (θ-ring)

ψp : π0A→ π0A such that

ψp(x + y) = ψp(x) + ψp(y).

ψp(1) = 1.

ψp(xy) = ψp(x)ψp(y).

ψp(x) ≡ xp mod p. θ : π0A→ π0A such that ψp(x) = xp + p θ(x).

ψp and θ correspond to elements of α ∈ K∧0 BΣp.

K∧q X
def
= πq

(
(K ∧ X )∧p

)
.

ψp is the pth Adams operation.
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Example 2: Morava E -theory (n = 2, p = 2)

C0/F2 = supersingular elliptic curve.

Ĉ0 = formal completion — formal group of height 2.

E = Landweber exact spectrum associated to universal deformation
of Ĉ .

π∗E ≈ Z2[[a]][u, u−1], |a| = 0, |u| = 2.

Note: K (2) is E/(2, a) (sort of).

E is a commutative S-algebra (Hopkins-Miller Theorem).

Next slide: calculation of the algebraic structure of power operations for
K (2)-local commutative E -algebras (R., prefigured by Kashiwabara 1995).
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Example 2 (continued): Formulas

A = K (2)-local commutative E -algebra (π0A is an E0 = Z2[[a]]-algebra).

Operations on π0 of K (2)-local E -algebra

Q0,Q1,Q2 : π0A→ π0A such that

Qi (x + y) = Qi (x) + Qi (y)

Q0(ax) = a2 Q0(x)− 2a Q1(x) + 6 Q2(x)
Q1(ax) = 3 Q0(x) + a Q2(x)
Q2(ax) = −a Q0(x) + 3 Q1(x)

Q1Q0(x) = 2 Q2Q1(x)− 2 Q0Q2(x)
Q2Q0(x) = Q0Q1(x) + a Q0Q2(x)− 2 Q1Q2(x)

Q0(1) = 1, Q1(1) = Q2(1) = 0

Q0(xy) = Q0xQ0y + 2Q1xQ2y + 2Q2xQ1y
Q1(xy) = Q0xQ1y + Q1xQ0y + aQ1xQ2y + aQ2xQ1y + 2Q2xQ2y
Q2(xy) = Q0xQ2y + Q2xQ0y + Q1xQ1y + aQ2xQ2y

Q0(x) ≡ x2 mod 2 θ : π0A→ π0A such that Q0(x) = x2 + 2 θ(x)
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Example 2 (continued): The ring of power operations

The ring Γ of power operations

Associative ring containing E0 = Z2[[a]] and generators Q0,Q1,Q2, and
subject to relations

Q0 a = a2 Q0 − 2a Q1 + 6 Q2

Q1 a = 3 Q0 + a Q2

Q2 a = −a Q0 + 3 Q1

Q1Q0 = 2 Q2Q1 − 2 Q0Q2

Q2Q0 = Q0Q1 + a Q0Q2 − 2 Q1Q2

Γ has “admissible basis” as left Z2[[a]] module:

Q i
0Qj1 · · ·Qjr , i ≥ 0, jk ∈ {1, 2}

Kashiwabara (1995): gives admissible basis for Γ̄ = F2 ⊗Z2[[a]] Γ.

Problem: Γ̄ is not a ring! (Kashiwabara knows this.)
He describes ring structure modulo indeterminacy.
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Example 2 (continued): Coproduct on Γ

“Cartan formula” is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

ε : Γ→ E0 and ∆: Γ→ E0Γ⊗ E0Γ by

ε(Q0) = 1, ε(Q1) = 0 = ε(Q2)

∆(Q0) = Q0 ⊗ Q0 + 2Q1 ⊗ Q2 + 2Q2 ⊗ Q1

∆(Q1) = Q0 ⊗ Q1 + Q1 ⊗ Q0 + aQ1 ⊗ Q2 + aQ2 ⊗ Q1 + 2Q2 ⊗ Q2

∆(Q2) = Q0 ⊗ Q2 + Q2 ⊗ Q0 + Q1 ⊗ Q1 + aQ2 ⊗ Q2

(E0M ⊗ E0N means tensor using left-module structures.)
Coproduct and product “commute”.

Conclusion

Γ is a twisted bialgebra over E0 (like a Hopf algebra, but E0 isn’t central).
Left Γ-modules have a symmetric monoidal tensor product: M ⊗E0 N.

Charles Rezk (UIUC) Power operations March 24, 2010 10 / 33



Example 2: Summary

Definition

A Γ-ring is a commutative ring object in Γ-modules.

Definition

An amplified Γ-ring is a Γ-ring B equipped with θ : B → B such that
Q0(x) = x2 + 2 θ(x) (together with formulas for θ(x + y), θ(xy), θ(ax)).

In summary:

Proposition

For A a K (2)-local commutative E -algebra, π0A naturally has the
structure of an amplified Γ-ring.
π0LK(2)PE (E ) ≈ F∧(2,a), with F = free amplified Γ-ring on one generator.

This can be extended to non-zero degrees:
π∗A is a graded amplified Γ-ring, etc.
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Part I: The general pattern

This is the general pattern for any Morava E -theory spectrum.

Power operations for Morava E -theory (height n, prime p)

π∗ of a K (n)-local commutative E -algebra is a graded amplified Γ-ring:

Γ is a certain twisted bialgebra over E0.

Q0 ∈ Γ and θ such that Q0(x) = xp + p θ(x).

π∗LK(n)PE (ΣqE ) ≈ F∧m ,
F = free graded amplified Γ-ring on one generator in dim. q.

Questions / topics

1 How does the formal group of E produce Γ? (Ando, Hopkins,
Strickland)

2 What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
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Part II: Formal groups and operations

E = even periodic ring spectrum =⇒ formal group GE .

Formal group GE of E

Formal scheme GE = Spf(E 0CP∞) over π0E .
Group law GE × GE → GE defined by

µ∗ : E 0CP∞ → E 0(CP∞ × CP∞) ≈ E 0CP∞⊗̂E0E 0CP∞.

µ : CP∞ × CP∞ → CP∞ classifies ⊗ of line bundles.

Additive and multiplicative transformation of functors:

E 0(X )
ψ

// F 0(X )

ψ∗ = homomorphism of formal groups over F0,
where g = ψ : E 0(∗)→ F 0(∗).
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Part II: Formal groups and power operations (E -theory)

G0/k formal group of height n, E = EG0/k . Power map:

E 0X
Pm

// E 0(X × BΣm)

E 0X
Pm

// E 0(X )⊗E0 E 0(BΣm)

E 0X
Pm

// E 0(X )⊗E0 E 0(BΣm)
τ // E 0X ⊗E0 E 0BΣm/I

Künneth isomorphism: E 0BΣm is finite and flat over E0.
I is the “transfer ideal”:

I =
∑

0<i<m

Image
[
E 0B(Σi × Σm−i )

transfer−−−−→ E 0BΣm

]
.

Proposition

τPm : E 0X → E 0X ⊗E0 E 0BΣm/I is a ring homomorphism.

Remark: E 0BΣm/I = 0 unless m = pr .
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Part II: The associated homomorphism

Let (Fpr )0(X ) = E 0X ⊗E0 E 0BΣpr /I .

Ring homomorphisms:

s∗ : E0 → (Fpr )0, induced by BΣpr → ∗.
t∗ : E0 → (Fpr )0, defined by τPpr

: E 0(∗)→ E 0(∗)⊗E0 E 0(BΣpr )/I .

The ring operation

E 0(X )
τPpr

// (Fpr )0(X )

produces a homomorphism of formal groups defined over (Fpr )0.

What kind of homomorphism?
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Part II: Deformations of Frobenius

Frobenius. φ : k → k defined by φ(x) = xp.
Relative Frobenius. Frob : G0 → φ∗G0.

Definition

A deformation of Frobenius (G , i , ψ)→ (G ′, i ′, ψ′) (of deformations of
G0 to R) is a homomorphism f : G → G ′ of formal groups over R, such
that

π∗G
π∗(f )

//

ψ ∼
��

π∗G ′

ψ′∼
��

i∗G0
i∗(Frobr )

// i ′∗G0

R/m

k

i
==||||||||

k

i ′
aaBBBBBBBB

φr
oo

commute for some r ≥ 0.
(π : R → R/m.)

Remark: Deformations of Frobenius with domain (G , i , ψ) correspond
exactly to finite subgroup schemes of G . (f  Ker(f ) ⊂ G .)
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Part II: Descent (Ando-Hopkins-Strickland (mid 90s?))

D(R) =

{
Objects: deformations (G , i , φ) of G0/k to R,

Morphisms: deformations of Frobenius.

f : R → R ′ =⇒ f ∗ : D(R)→ D(R ′).

Definition

A sheaf of modules M on D = {D(R)} consists of

functors MR : D(R)op → ModR ,

natural isomorphisms Mf : R ′ ⊗R MR
∼−→ MR′ ◦ f ∗,

satisfying obvious “coherence” axioms.
=⇒ symmetric monoidal category ModD of sheaves of modules.

Let Γ = ring of additive power operations for E .
That is, Γ ⊂

⊕
m≥0 E∧0 BΣm consisting of α such that Qα is additive.

Theorem

Equivalence ModD ≈ ModΓ of symmetric monoidal categories.
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Part II: Strickland’s Theorem

Operations τPpr
: E 0(X )→ (Fpr )0(X ) =⇒ homomorphism of formal

groups (τPpr
)∗ : s∗GE → t∗GE over (Fpr )0.

Theorem depends on the following.

Claim

The homomorphism (τPpr )∗ : s∗GE → t∗GE over (Fpr )0 is the universal
example of a deformation of Frobr between deformations of G0.

(Deformations G → G ′ of Frobr )⇐⇒ (subgroups H ⊂ G of rank pr ).

Result amounts to:

Theorem (Strickland (1998))

The data (s∗GE ,Ker(τPpr )∗) over (Fpr )0 = E 0BΣpr /I is the universal
example of a pair (G ,H) consisting of a deformation G of G0 and a finite
subgroup scheme H ⊂ G of rank pr .
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Part II: The ring Γ of power operations

Recall: Γ = ring of power operations for E = EG0/k .

Γ ⊂
⊕

m E∧0 BΣm is the submodule of primitives.

Γ =
⊕

r Γr , where Γr ⊂ E∧0 BΣpr .

Each Γr is a finitely generated free E0-module, and

E 0BΣpr /I ≈ HomE0(Γr ,E0).

Each Γr is a cocommutative coalgebra ⇔ product on E 0BΣpr /I .

Associative product Γr ⊗E0 Γr ′ → Γr+r ′ ⇔ composition of power
operations.

Warning: E0 is not in the center of Γ.
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Part III: Koszul algebras

A =
⊕

r≥0 Ar graded associative ring, A0 = R commutative.

Definition

A is Koszul if there exist R-modules Cr with C0 = R, and an exact
sequence (a “Koszul complex”)

· · · d−→ A⊗R C3
d−→ A⊗R C2

d−→ A⊗R C1
d−→ A⊗R C0

d−→ R → 0

of left A-modules such that d raises degree by 1.

Fact

If A is Koszul, then

A ≈ TR(A1)/(U), U ⊂ A2

(i.e., A is “quadratic”.)
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Part III: Koszul algebras (Example 2)

Back to the example: Γ ≈
⊕

Γr ≈ TE0(Γ1)/(U), where
Γ1 = E0{Q0,Q1,Q2}, U = Adem relations.
Note: Γ1 is an E0-bimodule; right E0-module structure is determined
by formulas Qia = · · · given earlier.

PBW Theorem (Priddy (1970)): if Γ has a “nice” admissible basis,
then Γ is Koszul.

=⇒ Exact sequence.

0→ Γ⊗E0 C2 → Γ⊗E0 C1 → Γ→ E0 → 0.

Ci are free modules over E0: rankC1 = 3, rankC2 = 2.

Charles Rezk (UIUC) Power operations March 24, 2010 21 / 33



Part III: Is Γ always Koszul?

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all E = EG0/k , the associated ring Γ of power operations is Koszul.
The associated Koszul complex has the form

0→ Γ⊗E0 Cn → · · · → Γ⊗E0 C1 → Γ→ E0 → 0,

where n = height of G0.

They developed a program to prove the result, using interesting ideas
about a kind of “Bruhat-Tits building” formed using flags of certain
finite subgroup schemes of GE .

I don’t believe they ever completed their program; there may be no
obstruction to doing so, however.

There is another proof, which avoids using formal group theory; it
uses ideas related to the Whitehead conjecture (Kuhn, Mitchell,
Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).
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Part III: Linearization

Here are some of the ideas in the proof.

Definition

Given a (nonadditive) functor F : ModE0 → ModE0 , the linearization
L[F ] : ModE0 → ModE0 is

L[F ](M) = Cok

 F (M ⊕M)
F (π1+π2)

//

F (π1)+F (π2)
// F (M)

 .
L[F ] is initial additive quotient functor of F .

In some cases, including ours, L[F ◦ G ]→ L[F ] ◦ L[G ] is an isomorphism.
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The free amplified Γ-ring monad

F : ModE0 → ModE0 the free amplified Γ-ring functor.

M = an E -module; F (π0M) “approximates”

π0LK(n)PE (M) ≈ π0LK(n)

∨
m

(M ∧E · · · ∧E M︸ ︷︷ ︸
m copies

)hΣm

 .

More precisely: for E -module M with π∗M = flat E∗-module
concentrated in even degree,

F (π0M) ≈
⊕
m≥0

π0LK(n)Pm
E (M).

Similarly, (F ◦ · · · ◦ F )(π0M) “approximates” π0(P ◦ · · · ◦ P)(M).
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Part III: Linearization of the amplified Γ-ring monad

Apply linearization to F ◦ · · · ◦ F .

L[F ](E0) = ∆.

∆ ≈
⊕

r ∆r , where

∆r ≈ Cok
[⊕

0<i<pr E∧0 B(Σi × Σpr−i )→ E∧0 BΣpr

]
.

∆ is a ring, non-canonically isomorphic to Γ. (We actually show ∆ is
Koszul.)

L[F ◦ · · · · · · ◦ F ](E0) = ∆⊗E0 · · · ⊗E0 ∆.

Monadic bar construction B•(F ,F ,F ).

L [B•(F ,F ,F )] ≈ B•(∆,∆,∆).
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Part III: Koszul rings and the bar construction

(Priddy 1970):

If ∆ is a graded ring, filter B•(M,∆,N) according to grading on ∆.

∆ is Koszul if grqB•(E0,∆,E0) has homology concentrated in degree
q.

Koszul complex “is” the spectral sequence associated to this filtration
on B•(M,∆,N); Ep,q

1 = chain complex.
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Part III: Partition complex

Bq(F ,F ,F )(E0) ≈ (F ◦ · · · ◦ F︸ ︷︷ ︸
(q + 2) times

)(E0) ≈
⊕
m≥0

E∧0 (Kq(m)hΣm).

K•(m) is the partition complex.

A partition of m = {1, . . . ,m} is an equivalence relation E on m.

Partitions ordered by refinement: E ≤ E ′ ⇔ E finer than E ′.

K•(m) = nerve {poset of partitions of m} .

Kq(m) = {(E0 ≤ E1 ≤ · · · ≤ Eq)}.
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Part III: Partition complex, continued

Apply linearization to partition description of B•(F ,F ,F ) to get

Bq(∆,∆,∆) ≈ L[Bq(F ,F ,F )](E0) ≈
⊕
m≥0

Qm(Kq(m))

where

Qm(X ) = Cok

[ ⊕
0<i<m

E∧0 (Xh(Σi×Σm−i ))→ E∧0 (XhΣm)

]
,

X is a set with Σm action.
Facts about Qm:

Qm(X q Y ) ≈ Qm(X )⊕ Qm(Y ).

Qm(Σm/H) = 0 if H does not act transitively on m.
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Part III: Quotient of the partition complex

Let K •(m) = K•(m)/K �• (m), where

K �q (m) = { (E0 ≤ · · · ≤ Eq) | E0 not finest or Eq not coarsest }.

Then
B•(E0,∆,E0) ≈

⊕
m

Qm(K •(m)).

This is 0 unless m = pr , in which case we want to show:

grprB•(E0,∆,E0) ≈ Qpr (K •(pr )) has H∗ concentrated in degree r .
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Part III: The idea of the proof

Need to show Qpr (K •(pr )) has H∗ concentrated in degree r .

K•(pr )× Σpr /(Σp o · · · o Σp) // // K•(pr ),

where

U•(pr ) =
⋃

A⊂Σpr

max. ab. subgp.

(K•(pr )× Σpr /(Σp o · · · o Σp))A .

Can form analogous quotient U•(pr ).

Reduce to showing Qpr (U•(pr )) is chain homotopy equivalent to a
complex concentrated in degree r .

Claim: There is a Σpr -equivariant homotopy equivalence
U•(pr ) ≈ X+ ∧ S r , where X is some Σpr -set.
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Part III: U•(p
r ) and the Tits building for GL(r , Fp)

A ⊂ Σpr maximal abelian subgroup:

K•(pr )A = nerve { poset of subgroups of A } .

For A ≈ (Z/p)r , the quotient K •(pr )A is (a 2-fold suspension of) the
Tits building for GL(r ,Fp).

K •(pr )A ≈

{∨
S r if A ≈ (Z/p)r ,

∗ otherwise.

A = (Z/p)r result is theorem of Solomon-Tits (1969).
Non-elementary A: can be shown in exactly the same way.

Show U•(pr ) ≈ X+ ∧ S r (Σpr -equivariantly) by the same
“shellability” argument that Solomon-Tits use for K •(pr )(Z/p)r

.
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Part III: End of the proof

The “shellability” argument gives an explicit chain homotopy
H : id ∼ f of maps of normalized chain complexes
NQpr (U•(pr ))→ NQpr (U•(pr )), where

f = 0 when • 6= r .

HKR =⇒ Qpr (Kq(pr ) ∧ Σpr /Σorp +) ≈ Qpr (Uq(pr ))⊕ (p-torsion).

Get chain homotopy H ′ : id ∼ f ′ on NQpr (K •(pr ) ∧ Σpr /Σorp +)) by
“extending by 0”, so that

plargef ′ = 0 when • 6= r .

NQpr (K •(pr )) is retract of NQpr (K •(pr ) ∧ Σpr /Σorp +) (transfer), and
is p-torsion free.

Get desired chain homotopy H ′′ : id ∼ f ′′ on NQpr (K •(pr )), with
f ′′ = 0 if • 6= r .
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The end
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