Power operations in Morava E-theory

Charles Rezk

University of Illinois at Urbana-Champaign

March 24, 2010

http://www.math.uiuc.edu/~rezk/baltimore-2010-power-ops-handout.pdf

Part I: What are power operations?

 $h^* =$ multiplicative cohomology theory: $h^p(X) \otimes h^q(X) \rightarrow h^{p+q}(X)$. *m*-th power map:

$$x \mapsto x^m \colon h^q(X) \to h^{mq}(X).$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^m :

- *P_m* is multiplicative, not additive.
- Pairing with $\alpha \in h_0(B\Sigma_m)$ gives an operation $Q_\alpha \colon h^0(X) \to h^0(X)$.
- Q_{α} is additive iff $\alpha \in \text{Primitives of } \bigoplus_{m} h_0(B\Sigma_m)$.

R = commutative S-algebra. M = an R-module. Note: $[R, M]_R \approx [S, M]_S \approx \pi_0 M$. Free commutative R-algebra on M:

$$\mathbb{P}_R M = \bigvee_{m \ge 0} \mathbb{P}_R^m M \approx \bigvee_{m \ge 0} (\underbrace{M \wedge_R \cdots \wedge_R M}_{m \text{ times}})_{h \Sigma_m}$$

commutative R-algebra A = algebra for the monad \mathbb{P}_R , determined by

$$\mu \colon \mathbb{P}_R A \to A.$$

Part I: How to build a power operation

- A =commutative R-algebra.
 - Choose $\alpha \colon S \to \mathbb{P}_R^m(R) \approx R \wedge B\Sigma_m^+$ (map of spectra).
 - Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

$$\mathbb{P}^m_R(R) \xrightarrow{\mathbb{P}^m_R(f_{\mathsf{x}})} \mathbb{P}^m_R(A)$$

Remarks:

۵

- $Q_{\alpha} : \pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{lpha} \colon \pi_{q} A o \pi_{q+r} A$ from

$$\alpha\colon \Sigma^{q+r}R\to \mathbb{P}^m_R(\Sigma^q R)\approx R\wedge B\Sigma^{qV_m}_m.$$

Part I: Deformations & Morava E-theory

Let G_0 = height *n* formal group over perfect field *k*, char*k* = *p*, *n* < ∞ . Let *R* = complete local ring, $\pi : R \to R/\mathfrak{m}$.

Definition

A deformation of G_0 to R is (G, i, ψ) :

• G a formal group over R,

•
$$i: k \to R/\mathfrak{m}$$
,

• $\psi \colon \pi^* G \xrightarrow{\sim} i^* G_0$ iso of formal groups over R/\mathfrak{m} .

Theorem (Lubin-Tate)

There is a universal example of a deformation of G_0 , defined over $E_0 \approx \mathbb{W}_p k[\![u_1, \ldots, u_{n-1}]\!]$.

Theorem (Morava; Hopkins-Miller)

Given G_0/k , there is a corresponding even periodic commutative S-algebra $E = E_{G_0/k}$, whose formal group is the universal deformation of G_0 .

Example 1: *p*-complete *K*-algebras [McClure]

K = complex K -theory spectrum.

p-complete *K*-algebra: commutative *K*-algebra *A* such that $A \approx A_p^{\wedge}$.

 K_p^{\wedge} is associated to universal deformation of \widehat{G}_m (height 1).

Operations on π_0 of *p*-complete *K*-algebra (θ -ring)

 $\psi^{p} \colon \pi_{0}A \to \pi_{0}A$ such that

•
$$\psi^{p}(x+y) = \psi^{p}(x) + \psi^{p}(y).$$

•
$$\psi^{p}(1) = 1.$$

•
$$\psi^p(xy) = \psi^p(x)\psi^p(y).$$

• $\psi^p(x) \equiv x^p \mod p$. $\theta \colon \pi_0 A \to \pi_0 A$ such that $\psi^p(x) = x^p + p \, \theta(x)$.

 ψ^{p} and θ correspond to elements of $\alpha \in K_{0}^{\wedge}B\Sigma_{p}$.

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

 ψ^{p} is the *p*th **Adams operation**.

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \hat{C} .

 $\pi_* E \approx \mathbb{Z}_2[[a]][u, u^{-1}], \qquad |a| = 0, |u| = 2.$

Note: K(2) is E/(2, a) (sort of).

• *E* is a commutative *S*-algebra (Hopkins-Miller Theorem).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative *E*-algebras (R., prefigured by Kashiwabara 1995).

Example 2 (continued): Formulas

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2[\![a]\!]$ -algebra).

Operations on π_0 of K(2)-local *E*-algebra

 $Q_0, Q_1, Q_2 \colon \pi_0 A o \pi_0 A$ such that

•
$$Q_i(x + y) = Q_i(x) + Q_i(y)$$

 $Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$
• $Q_1(ax) = 3 Q_0(x) + a Q_2(x)$
 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$
• $Q_1Q_0(x) = 2 Q_2Q_1(x) - 2 Q_0Q_2(x)$
 $Q_2Q_0(x) = Q_0Q_1(x) + a Q_0Q_2(x) - 2 Q_1Q_2(x)$
• $Q_0(1) = 1, Q_1(1) = Q_2(1) = 0$
 $Q_0(xy) = Q_0xQ_0y + 2Q_1xQ_2y + 2Q_2xQ_1y$
• $Q_1(xy) = Q_0xQ_1y + Q_1xQ_0y + aQ_1xQ_2y + aQ_2xQ_1y + 2Q_2xQ_2y$
 $Q_2(xy) = Q_0xQ_2y + Q_2xQ_0y + Q_1xQ_1y + aQ_2xQ_2y$
• $Q_0(x) \equiv x^2 \mod 2 \quad \theta: \pi_0A \rightarrow \pi_0A \text{ such that } Q_0(x) = x^2 + 2\theta(x)$

The ring Γ of power operations

Associative ring containing $E_0 = \mathbb{Z}_2[\![a]\!]$ and generators Q_0, Q_1, Q_2 , and subject to relations

 Γ has "admissible basis" as left $\mathbb{Z}_2[a]$ module:

$$Q_0^i Q_{j_1} \cdots Q_{j_r}, \qquad i \ge 0, \, j_k \in \{1, 2\}$$

Kashiwabara (1995): gives admissible basis for $\overline{\Gamma} = \mathbb{F}_2 \otimes_{\mathbb{Z}_2[\![a]\!]} \Gamma$. Problem: $\overline{\Gamma}$ is not a ring! (Kashiwabara knows this.) He describes ring structure modulo indeterminacy.

Example 2 (continued): Coproduct on Γ

"Cartan formula" is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

 $\epsilon \colon \Gamma \to E_0 \text{ and } \Delta \colon \Gamma \to {}_{E_0}\Gamma \otimes {}_{E_0}\Gamma \text{ by}$

 $\epsilon(Q_0) = 1, \qquad \epsilon(Q_1) = 0 = \epsilon(Q_2)$

 $\begin{array}{l} \Delta(Q_0) = Q_0 \otimes Q_0 + 2Q_1 \otimes Q_2 + 2Q_2 \otimes Q_1 \\ \Delta(Q_1) = Q_0 \otimes Q_1 + Q_1 \otimes Q_0 + aQ_1 \otimes Q_2 + aQ_2 \otimes Q_1 + 2Q_2 \otimes Q_2 \\ \Delta(Q_2) = Q_0 \otimes Q_2 + Q_2 \otimes Q_0 + Q_1 \otimes Q_1 + aQ_2 \otimes Q_2 \end{array}$

 $(E_0 M \otimes E_0 N \text{ means tensor using left-module structures.})$ Coproduct and product "commute".

Conclusion

Γ is a **twisted bialgebra** over E_0 (like a Hopf algebra, but E_0 isn't central). Left Γ-modules have a symmetric monoidal tensor product: $M \otimes_{E_0} N$.

Definition

A Γ -ring is a commutative ring object in Γ -modules.

Definition

An **amplified** Γ -**ring** is a Γ -ring *B* equipped with $\theta: B \to B$ such that $Q_0(x) = x^2 + 2\theta(x)$ (together with formulas for $\theta(x + y)$, $\theta(xy)$, $\theta(ax)$).

In summary:

Proposition

For A a K(2)-local commutative *E*-algebra, $\pi_0 A$ naturally has the structure of an amplified Γ -ring. $\pi_0 L_{K(2)} \mathbb{P}_E(E) \approx F^{\wedge}_{(2,a)}$, with F = free amplified Γ -ring on one generator.

This can be extended to non-zero degrees: π_*A is a **graded amplified** Γ -ring, etc.

Part I: The general pattern

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative *E*-algebra is a graded amplified Γ -ring:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.

•
$$\pi_* L_{\mathcal{K}(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$$
,
 $F = \text{free graded amplified } \Gamma\text{-ring on one generator in dim. } q$.

Questions / topics

 How does the formal group of *E* produce Γ? (Ando, Hopkins, Strickland)

2 What is the algebraic structure of Γ ? (quadratic? Koszul?) (R.)

Part II: Formal groups and operations

E = even periodic ring spectrum \implies formal group G_E .

Formal group G_E of E

Formal scheme $G_E = \operatorname{Spf}(E^0 \mathbb{CP}^\infty)$ over $\pi_0 E$. Group law $G_E \times G_E \to G_E$ defined by

$$\mu^* \colon E^0 \mathbb{CP}^\infty \to E^0 (\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \approx E^0 \mathbb{CP}^\infty \widehat{\otimes}_{E_0} E^0 \mathbb{CP}^\infty$$

 $\mu\colon \mathbb{CP}^{\infty}\times\mathbb{CP}^{\infty}\to\mathbb{CP}^{\infty} \text{ classifies }\otimes \text{ of line bundles}.$

Additive and multiplicative transformation of functors:

$$E^0(X) \xrightarrow{\psi} F^0(X)$$

 $\psi^* =$ homomorphism of formal groups over F_0 , where $g = \psi \colon E^0(*) \to F^0(*)$.

Part II: Formal groups and power operations (*E*-theory)

 G_0/k formal group of height *n*, $E = E_{G_0/k}$. Power map:

$$E^0 X \xrightarrow{P^m} E^0 (X \times B\Sigma_m)$$

$$E^0X \xrightarrow{P^m} E^0(X) \otimes_{E_0} E^0(B\Sigma_m)$$

$$E^0 X \xrightarrow{P^m} E^0(X) \otimes_{E_0} E^0(B\Sigma_m) \xrightarrow{\tau} E^0 X \otimes_{E_0} E^0 B\Sigma_m / I$$

Künneth isomorphism: $E^0 B \Sigma_m$ is finite and flat over E_0 . *I* is the "transfer ideal":

$$I = \sum_{0 < i < m} \text{Image} \left[E^0 B(\Sigma_i \times \Sigma_{m-i}) \xrightarrow{\text{transfer}} E^0 B \Sigma_m \right]$$

Proposition

 $\tau P^m \colon E^0 X \to E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$ is a ring homomorphism.

Remark: $E^0 B \Sigma_m / I = 0$ unless $m = p^r$.

Charles Rezk (UIUC)

Let
$$(F_{p^r})^0(X) = E^0 X \otimes_{E^0} E^0 B \Sigma_{p^r}/I$$
.

Ring homomorphisms:

• $s^* \colon E_0 \to (F_{p^r})_0$, induced by $B\Sigma_{p^r} \to *$.

• $t^* \colon E_0 \to (F_{p^r})_0$, defined by $\tau P^{p^r} \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_{p^r})/I$. The ring operation

 $E^0(X) \xrightarrow{\tau P^{p^r}} (F_{p^r})^0(X)$

produces a homomorphism of formal groups defined over $(F_{p^r})_0$.

What kind of homomorphism?

Part II: Deformations of Frobenius

Frobenius. $\phi: k \to k$ defined by $\phi(x) = x^{p}$. **Relative Frobenius.** Frob: $G_0 \to \phi^* G_0$.

Definition

A deformation of Frobenius $(G, i, \psi) \rightarrow (G', i', \psi')$ (of deformations of G_0 to R) is a homomorphism $f: G \rightarrow G'$ of formal groups over R, such that

Remark: Deformations of Frobenius with domain (G, i, ψ) correspond *exactly* to finite subgroup schemes of G. $(f \rightsquigarrow \text{Ker}(f) \subset G.)$

Part II: Descent (Ando-Hopkins-Strickland (mid 90s?))

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R \\ \text{Morphisms: deformations of Frobenius.} \\ f: R \to R' \implies f^*: \mathcal{D}(R) \to \mathcal{D}(R'). \end{cases}$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathrm{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f : R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \implies symmetric monoidal category $\operatorname{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let $\Gamma = \text{ring of additive power operations for } E$. That is, $\Gamma \subset \bigoplus_{m \ge 0} E_0^{\wedge} B \Sigma_m$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\operatorname{Mod}_{\mathcal{D}} \approx \operatorname{Mod}_{\Gamma}$ of symmetric monoidal categories.

Part II: Strickland's Theorem

Operations $\tau P^{p^r} : E^0(X) \to (F_{p^r})^0(X) \Longrightarrow$ homomorphism of formal groups $(\tau P^{p^r})^* : s^* G_E \to t^* G_E$ over $(F_{p^r})_0$. Theorem depends on the following.

Claim

The homomorphism $(\tau P_{p^r})^* : s^* G_E \to t^* G_E$ over $(F_{p^r})_0$ is the universal example of a deformation of Frob^r between deformations of G_0 .

(Deformations $G \to G'$ of Frob^r) \iff (subgroups $H \subset G$ of rank p^r).

Result amounts to:

Theorem (Strickland (1998))

The data $(s^*G_E, \operatorname{Ker}(\tau P_{p^r})^*)$ over $(F_{p^r})_0 = E^0 B \Sigma_{p^r} / I$ is the universal example of a pair (G, H) consisting of a deformation G of G_0 and a finite subgroup scheme $H \subset G$ of rank p^r .

Part II: The ring Γ of power operations

Recall: Γ = ring of power operations for $E = E_{G_0/k}$.

- $\Gamma \subset \bigoplus_m E_0^{\wedge} B\Sigma_m$ is the submodule of primitives.
- $\Gamma = \bigoplus_r \Gamma_r$, where $\Gamma_r \subset E_0^{\wedge} B \Sigma_{p^r}$.
- Each Γ_r is a finitely generated free E_0 -module, and

$$E^0 B \Sigma_{p^r} / I \approx \operatorname{Hom}_{E_0}(\Gamma_r, E_0).$$

- Each Γ_r is a cocommutative coalgebra \Leftrightarrow product on $E^0 B \Sigma_{p^r} / I$.
- Associative product $\Gamma_r \otimes_{E_0} \Gamma_{r'} \to \Gamma_{r+r'} \Leftrightarrow$ composition of power operations.
- Warning: E_0 is not in the center of Γ .

Part III: Koszul algebras

 $A = \bigoplus_{r \ge 0} A_r$ graded associative ring, $A_0 = R$ commutative.

Definition

A is **Koszul** if there exist R-modules C_r with $C_0 = R$, and an exact sequence (a "Koszul complex")

$$\cdots \xrightarrow{d} A \otimes_R C_3 \xrightarrow{d} A \otimes_R C_2 \xrightarrow{d} A \otimes_R C_1 \xrightarrow{d} A \otimes_R C_0 \xrightarrow{d} R \to 0$$

of left A-modules such that d raises degree by 1.

Fact

If A is Koszul, then

$$A \approx T_R(A_1)/(U), \qquad U \subset A_2$$

(i.e., A is "quadratic".)

Part III: Koszul algebras (Example 2)

- Back to the example: Γ ≈ ⊕ Γ_r ≈ T_{E0}(Γ₁)/(U), where Γ₁ = E₀{Q₀, Q₁, Q₂}, U = Adem relations. Note: Γ₁ is an E₀-bimodule; right E₀-module structure is determined by formulas Q_ia = ··· given earlier.
- **PBW Theorem** (Priddy (1970)): if Γ has a "nice" admissible basis, then Γ is Koszul.
- \implies Exact sequence.

$$0 \to \Gamma \otimes_{E_0} C_2 \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0.$$

 C_i are free modules over E_0 : rank $C_1 = 3$, rank $C_2 = 2$.

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

where $n = height of G_0$.

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there may be no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Here are some of the ideas in the proof.

Definition

Given a (nonadditive) functor $F \colon \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$, the linearization $\mathcal{L}[F] \colon \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ is

$$\mathcal{L}[F](M) = \operatorname{Cok}\left[F(M \oplus M) \xrightarrow{F(\pi_1 + \pi_2)} F(M) \right]$$

 $\mathcal{L}[F]$ is initial additive quotient functor of F.

In some cases, including ours, $\mathcal{L}[F \circ G] \to \mathcal{L}[F] \circ \mathcal{L}[G]$ is an isomorphism.

The free amplified Γ-ring monad

- $F \colon \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified $\Gamma\text{-ring}$ functor.
- M = an E-module; $F(\pi_0 M)$ "approximates"

$$\pi_0 L_{\mathcal{K}(n)} \mathbb{P}_E(M) \approx \pi_0 L_{\mathcal{K}(n)} \left(\bigvee_m (\underbrace{M \wedge_E \cdots \wedge_E M}_{m \text{ copies}})_{h \Sigma_m} \right).$$

More precisely: for *E*-module *M* with π_{*}*M* = flat *E*_{*}-module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}^m_E(M).$$

• Similarly, $(F \circ \cdots \circ F)(\pi_0 M)$ "approximates" $\pi_0(\mathbb{P} \circ \cdots \circ \mathbb{P})(M)$.

Part III: Linearization of the amplified Γ -ring monad

Apply linearization to $F \circ \cdots \circ F$.

$$\mathcal{L}[F](E_0)=\Delta.$$

$$\begin{split} &\Delta \approx \bigoplus_r \Delta_r, \text{ where} \\ &\Delta_r \approx \operatorname{Cok} \left[\bigoplus_{0 < i < p^r} E_0^{\wedge} B(\Sigma_i \times \Sigma_{p^r - i}) \to E_0^{\wedge} B\Sigma_{p^r} \right]. \\ &\Delta \text{ is a ring, non-canonically isomorphic to } \Gamma. \text{ (We actually show } \Delta \text{ is Koszul.)} \end{split}$$

۲

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta$$

• Monadic bar construction $\mathcal{B}_{\bullet}(F, F, F)$.

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M, \Delta, N)$ according to grading on Δ .
- Δ is **Koszul** if $\operatorname{gr}_q \mathcal{B}_{\bullet}(E_0, \Delta, E_0)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on B_●(M, Δ, N); E^{p,q}₁ = chain complex.

$$\mathcal{B}_q(F,F,F)(E_0) \approx (\underbrace{F \circ \cdots \circ F}_{(q+2) \text{ times}})(E_0) \approx \bigoplus_{m \ge 0} E_0^{\wedge}(K_q(m)_{h \Sigma_m}).$$

 $K_{\bullet}(m)$ is the **partition complex**.

- A partition of $\underline{m} = \{1, \dots, m\}$ is an equivalence relation E on \underline{m} .
- Partitions ordered by refinement: $E \leq E' \Leftrightarrow E$ finer than E'.

۲

$$K_{\bullet}(m) = \text{nerve} \{ \text{poset of partitions of } \underline{m} \}.$$

$$\mathcal{K}_q(m) = \{ (E_0 \leq E_1 \leq \cdots \leq E_q) \}.$$

Apply linearization to partition description of $\mathcal{B}_{\bullet}(F, F, F)$ to get

$$\mathcal{B}_q(\Delta, \Delta, \Delta) \approx \mathcal{L}[\mathcal{B}_q(F, F, F)](E_0) \approx \bigoplus_{m \ge 0} Q_m(K_q(m))$$

where

$$Q_m(X) = \operatorname{Cok}\left[\bigoplus_{0 < i < m} E_0^{\wedge}(X_{h(\Sigma_i \times \Sigma_{m-i})}) \to E_0^{\wedge}(X_{h\Sigma_m})\right],$$

X is a set with Σ_m action. Facts about Q_m :

•
$$Q_m(X \amalg Y) \approx Q_m(X) \oplus Q_m(Y).$$

Q_m(Σ_m/H) = 0 if H does not act transitively on <u>m</u>.

Part III: Quotient of the partition complex

• Let
$$\overline{K}_{\bullet}(m) = K_{\bullet}(m)/K_{\bullet}^{\diamond}(m)$$
, where

 $\mathcal{K}_q^{\diamond}(m) = \{ (E_0 \leq \cdots \leq E_q) \mid E_0 \text{ not finest } or \ E_q \text{ not coarsest} \}.$

Then

$$\mathcal{B}_{\bullet}(E_0,\Delta,E_0)\approx \bigoplus_m Q_m(\overline{K}_{\bullet}(m)).$$

• This is 0 unless $m = p^r$, in which case we want to show:

 $\operatorname{gr}_{p^r} \mathcal{B}_{\bullet}(E_0, \Delta, E_0) \approx Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

• Need to show $Q_{p'}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$\mathcal{K}_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow \mathcal{K}_{\bullet}(p^r),$$

where

۲

$$U_{\bullet}(p^r) = \bigcup_{\substack{A \subset \Sigma_{p^r} \\ \text{max. ab. subgp.}}} (K_{\bullet}(p^r) \times \Sigma_{p^r} / (\Sigma_p \wr \cdots \wr \Sigma_p))^A.$$

- Can form analogous quotient $\overline{U}_{\bullet}(p^r)$.
- Reduce to showing Q_p(U
 →(p^r)) is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is some Σ_{p^r} -set.

Part III: $U_{\bullet}(p^r)$ and the Tits building for $GL(r, \mathbb{F}_p)$

• $A \subset \Sigma_{p^r}$ maximal abelian subgroup:

 $K_{\bullet}(p^r)^A = \text{nerve} \{ \text{ poset of subgroups of } A \}.$

For $A \approx (\mathbb{Z}/p)^r$, the quotient $\overline{K}_{\bullet}(p^r)^A$ is (a 2-fold suspension of) the Tits building for $GL(r, \mathbb{F}_p)$.

$$\overline{K}_{\bullet}(p^r)^A \approx \begin{cases} \bigvee S^r & \text{if } A \approx (\mathbb{Z}/p)^r, \\ * & \text{otherwise.} \end{cases}$$

 $A = (\mathbb{Z}/p)^r$ result is theorem of Solomon-Tits (1969). Non-elementary A: can be shown in exactly the same way.

• Show $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$ (Σ_{p^r} -equivariantly) by the same "shellability" argument that Solomon-Tits use for $\overline{K}_{\bullet}(p^r)^{(\mathbb{Z}/p)^r}$.

Part III: End of the proof

• The "shellability" argument gives an explicit chain homotopy $H: \operatorname{id} \sim f$ of maps of normalized chain complexes $NQ_{p^r}(\overline{U}_{\bullet}(p^r)) \rightarrow NQ_{p^r}(\overline{U}_{\bullet}(p^r))$, where

f = 0 when $\bullet \neq r$.

- HKR $\implies Q_{p^r}(\overline{K}_q(p^r) \wedge \Sigma_{p^r}/\Sigma_{p_+}^{\wr r}) \approx Q_{p^r}(\overline{U}_q(p^r)) \oplus (p\text{-torsion}).$
- Get chain homotopy $H': \operatorname{id} \sim f'$ on $NQ_{p'}(\overline{K}_{\bullet}(p^r) \wedge \Sigma_{p'}/\Sigma_{p+}^{\wr r}))$ by "extending by 0", so that

$$p^{\text{large}}f' = 0$$
 when $\bullet \neq r$.

- $NQ_{p^r}(\overline{K}_{\bullet}(p^r))$ is retract of $NQ_{p^r}(\overline{K}_{\bullet}(p^r) \wedge \Sigma_{p^r}/\Sigma_{p+}^{\backslash r})$ (transfer), and is *p*-torsion free.
- Get desired chain homotopy H'': $\operatorname{id} \sim f''$ on $NQ_{p^r}(\overline{K}_{\bullet}(p^r))$, with f'' = 0 if $\bullet \neq r$.

http://www.math.uiuc.edu/~rezk/baltimore-2010-power-ops-handout.pdf

- Ando, "Isogenies of formal group laws and powen operations in the cohomology theories E_n ", Duke 1995.
- Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004; arXiv:math/0204053.
- Bruner, May, McClure, Steinberger, H_∞ ring spectra and their applications, LNM 1176, 1986.
- Hovey, Strickland, Morava K-theories and localization, Mem. AMS 139, 1999.
- Kashiwabara, "K(2)-homology of some infinite loop spaces", Math. Z., 1995.
- Priddy, "Koszul resolutions", Trans. AMS, 1970.
- Rezk, "The units of a ring spectrum and a logarithmic cohomology operation", J. AMS, 2006; arXiv:math/0407022.
- Rezk, "Power operations for Morava E-theory of height 2 at the prime 2", arXiv:0812.1320.
- Rezk, "The congruence criterion for power operations in Morava E-theory", arXiv:0902.2499.
- Strickland, "Finite subgroups of formal groups", J. Pure Appl. Alg., 1997.
- Strickland, "Morava E-theory of symmetric groups", Topology, 1998; arXiv:math/9801125.
- Strickland, "K(n)-local duality for finite groups and groupoids", Topology, 2000; arXiv:math/0011109.