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GENERALIZATIONS OF WITT VECTORS IN ALGEBRAIC TOPOLOGY

CHARLES REZK

Abstract. Witt vector constructions (both integral and p-adic) are the underlying functors of the
comonads which define λ-rings and p-derivation rings, which arise algebraic structures on certain
K-theory rings. In algebraic topology, this is a special case of structure that exist for a number
of generalized cohomology theories. In this talk I will describe the analogue of this structure
for “Morava E-theories”, which are cohomology theories associated to universal deformations of
1-dimensional formal groups of finite height.

1. Introduction

Talk for the workshop on “Witt vectors, Deformations, and Anabelian Geometry” at U. of
Vermont, July 16–21, 2018.

The goal of this talk is to describe some generalizations of “Witt vectors” and “λ-rings” which
show up in algebraic topology, in the guise of algebras of “power operations” for certain cohomology
theories. I won’t dwell much on the algebraic topology aspect: the set-up I describe arises directly
from the arithemetic algebraic geometry of formal groups and isogenies.

comonad algebra group object cohomology theory
W (big Witt) λ-rings Gm (equivariant) K-theory

Wp (p-typical Witt) p-derivation ring Ĝm K-theory w/ p-adic coeff
?? T-algebra universal def. of fg Morava E-theory
?? ?? certain p-divisible group K(h)-localization of Morava E-theory
?? ?? elliptic curves (equivariant) elliptic cohomology
?? ?? Tate curve (equivariant) Tate K-tehory.

There are other examples, corresponding to certain p-divisible groups (local), or elliptic curves (global).

The case of Morava E-theory was observed by Ando, Hopkins, and Strickland, together with
some contributions by me.

2. Λ-rings

λ-rings were invented by Grothendieck1 to formalize certain operations on vector bundles, or
representations. Thus,

λnV = nth exterior power of V ,
satisfying various conditions. For instance, for direct sum:

λ
n

(V +W ) =
∑

λ
i
V ⊗ λ

n−i
W.

There are also formulas for exterior power of tensor product and for composition of exterior powers:

λ
n

(V ⊗W ) = polynomial in λ
i
V , λ

j
W ,

λ
m
λ
n
V = polynomial in λ

i
V .

These polynomials involve possibly negative integer coefficients, so we must regard these as acting on a Grothendieck ring, e.g., K0X

or RG.

The forgetful functor
(λ-rings)→ (commutative rings)

Date: July 20, 2018.
1By which I mean what he called “special λ-rings”
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has both a left and right adjoint, and in fact is both monadic and comonadic. The functor of the
comonad is the big Witt vector construction. λ-rings are precisely “coalgebras” for this comonad.

3. Adams operations and Frobenius lifts

Other operations on λ-ring R are symmetric powers σn, which can be expressed (on a Grothendieck
group) in terms of exterior powers. We also have Adams operations ψm(V ).∑

k≥0

σk(V ) t
k

=

(∑
k≥0

λk(V ) (−t)k
)−1

= exp

[∑
m≥1

1

m
ψ

m
(V ) t

m

]
.

Taking a log-derivative gives ψm(V ) = polynomial in λi(V ) with Z-coefficients. Adams observed:

(1) ψm are ring homomorphisms,
(2) ψmψn = ψmn,
(3) ψp(x) ≡ xp mod pR if p prime.

That is, ψp is a lift of Frobenius for each prime, and lifts for different primes commute.
Note that λk(x) = polynomial in ψm(x) with Q-coefficients, so a λ-ring structure is determined

by Adams operations rationally.
There is a partial converse.

3.1. Theorem (Wilkerson). Let R be a commutative ring equipped with functions ψm : R → R
satisfying the above conditions (1)–(3). If R is torsion free, then there exists a unique λ-ring
structure on R with the given ψms as the Adams operations.

It turns out that a free λ-ring on a set of generators is torsion free as an abelian group (in fact,
it’s a polynomial ring). This means that the entire theory of λ-rings can be recovered from the
theory of ψps.

4. Multiplicative group

Consider the representation ring of the circle:

R(U(1)) = Z[T, T−1].

Multiplication µ : U(1)× U(1)→ U(1) is a homomorphism, so we get a coproduct

µ∗ : R(U(1))→ R(U(1)× U(1)) ≈ R(U(1))⊗R(U(1)).

This Hopf algebra is the ring of functions on Gm, i.e.,

Gm = SpecR(U(1)).

The Adams operations ψn, n ≥ 1 thus give rise to endomorphisms of the group scheme Gm. A
straightforward calculation (ψn(T ) = Tn) shows that the endomorphism is [n] : Gm → Gm.

Note that on (Gm)Fp , the endomorphism [p] is also the Frobenius.
(Remark: in complex K-theory, there is also a ψ−1, corresponding to complex conjugation. This induces [−1] on Gm.)

5. Power operations

To see how this generalizes, we look at a different construction of ψm. First note the “total mth
power” operation:

Pm(V ) := V ⊗m =
∑
π

ρπ ⊗ σπ(V ), Pm : K0(X)→ RΣm ⊗K0(X),

sum over irreps π of Σm.

• σtriv = σm, and σsign = λm.
•
∑

π(dim ρπ)σπ(V ) = V ⊗m.



GENERALIZATIONS OF WITT VECTORS IN ALGEBRAIC TOPOLOGY 3

It turns out that every σπ ∈ Z[λk, k ≥ 1]. See Atiyah, “Power operations in K-theory”.

The power construction is multiplicative: (V ⊗W )⊗m ≈ V ⊗m⊗W⊗m. It is not additive; instead:

(V +W )⊗m =
∑

i+j=m

V ⊗i ⊗W⊗j ↑Σm
Σi×Σj

.

The failure of additivity comes from induced representations from proper subgroups Σi×Σm−i ( Σm.
We can get a ring homomorphism by quotienting by the “transfer ideal”:

K0(X)
Pm−−→ RΣm ⊗K0(X)→

(
RΣm/Itr

)
⊗K0(X) ≈ Z⊗K0(X).

This gives the Adams operation ψm, which is a ring homomorphism.

6. Power operations for commutative ring spectra

The above analysis is specific to K-theory, but there is a class of cohomology theories which allow
us to do something similar, namely those arising from commutative ring spectra, also called
E∞-ring spectra. For such E we have

E0(X)
Pm−−→ E0(BΣm ×X)

∼?←−− E0(BΣm)⊗E0(pt) E
0(X)→ E0(BΣm)/Itr ⊗E0(pt) E

0(X).

The function Pm is a refinement of the ordinary mth power map x 7→ xm.
In certain cases, the second map is an isomorphism, in which case we get a ring homomorphism

E0(X)→ E0(BΣm)/Itr ⊗E0(pt) E
0(X).

Example. If E = HF2 is ordinary mod 2 cohomology, and m = 2, then Itr = 0, and we get the
classical Steenrod operations.

Example. Let E = Kp, the p-completion of the complex K-theory spectrum. Then

K0
p(BΣpk)/Itr ≈

{
Zp if m = pk

0 else.

We get natural ring maps

ψp
k

: K0
p(X)→ K0

p(X)⊗K0
p(BΣpk)/I = K0

p(X).

One has that K0
p(BΣp) = Zp ⊕ Zp, so that the total operation is

Pp(x) = (ψp(x), δ(x)),

where ψp(x) = xp + p δ(x). One can show that the entire structure the Pms produce in this case are
exactly a “ring with p-derivation”.

The object K0
p(BU(1)) ≈ Zp[[t]] ≈ OĜm

is functions on the formal multiplicative group Ĝm.

On this ψp
k

realize [pk] : Ĝm → Ĝm.

7. The deformation category

I now describe how this works out for a family of theories called Morava E-theory.
Fix

• κ perfect field char p,
• Γ one-dimensional formal group of finite height n over κ.

Deformations. Given a complete local ring R, a deformation of Γ/k to R is data(
G/R, i : κ→ R/m, α : i∗Γ

∼−→ GR/m
)
.
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G is a formal group over R, and we have

G

��

G0

��

oo i∗Γ
α
∼

oo //

��

Γ

��

Spf R SpecR/moo SpecR/m
i
// Specκ

G0 = special fiber of G→ Spf R. (If κ = Fp we can ignore i.)
Isogenies. Consider isogenies of formal groups over R.

Ker f // // G
f
// //

&& &&

G′

G/Ker f

∼
OO

Ker f is a finite subgroup scheme of G. Up to canonical isomorphism, the data of f is the same as
the data of the pair (G,Ker f).

Deformation structures can be pushed forward along isogenies using relative Frobenius:

G
f

// G′

(i, α) � // (i′, α′)

with deg f = pk, where i′ = i ◦ σk and

G0
f0

// G′0

i∗Γ

α ∼

OO

Frk
// (i ◦ σk)∗Γ

∼ ∃! α′

OO

where σ(x) = xp is absolute Frobenius.
Category of deformations and isogenies. For each R we get a category

DefΓ(R) =

{
obj: deformations (G, i, α),

mor: f : G→ G′ st. (i, α) 7→ (i′, α′).

Fact. DefΓ is representable:

DefΓ =

{
Spf A,∐
k≥0 Spf Ak.

We have A = A0. The category structure is encoded by ring maps:

A
s //

t
// A1, Ak+`

µ
// Ak

s⊗AtA`.

Spf A is the Lubin-Tate deformation space of Γ/k, so that

(iso classes of (G, i, α)) ≈ (local homomorphisms A→ R).

There is a universal deformation (Guniv, i, α) to A, and a non-canonical isomorphism

A ≈Wpκ[[a1, . . . , an−1]], n = ht Γ.

If two deformations are isomorphic, they are so by a unique isomorphism.

Spf Ak carries the universal example of subgroup of rank pk of a deformation:

(iso classes of (G, i, α,H ≤ G), rkH = pk) ≈ (local homomorphisms Ak → R).
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This was shown to exist by Strickland. “Finite subgroups of formal groups.” Note that s : A→ Ak is finite
and flat.

Frobenius. If Fp ⊆ R, then for a deformation (G, i, α) there is a canonical subgroup Ker Frk ≤ G
of rank pk, where Frk : G→ (σk)∗G is pkth power relative Frobenius. This is represented by a map

τ : Ak → A/p.

Morava E-theory. For each Γ/κ, there is a generalized cohomology theory E called Morava
E-theory with

• E0(pt) = A.
• E∗(pt) = A[µ±], |µ| = 2. (“Even periodic”.)
• E0(BU(1)) = OGuniv , the ring of functions on the universal deformation of Γ/κ.
• E is a commutative ring spectrum (the “Goerss-Hopkins-Miller” theorem).
• E0(BΣpk)/Itr = Ak (Strickland, “Morava E-theory of symmetric groups”.)

8. ΛΓ-rings

From the above category we produce an analogue of Witt vectors and λ-rings, which I’ll call
Γ-Witt vectors and ΛΓ-rings.

We define categories
Q = QCohRing(DefΓ) ⊇ QFr

as follows. A quasicoherent sheaf of commutative rings on DefΓ is data

(R, {ψk, k ≥ 0})
consisting an A-alegbra A→ R, maps

ψk : R→ t
Ak

s⊗A R
of A-algebras (where the target gets its A-algebra structure from t : A→ Ak), and such that

R
ψk //

ψk+`

��

Ak
s⊗A R

id⊗ψ`
��

Ak+`
s⊗A R

µ⊗id
// Ak

s⊗AtA`s⊗A R

Such an object satisfies the Frobenius congruence if

R
ψk //

����

Ak
s⊗A R

τ⊗id��

A/p⊗A R

R/p
x 7→xpk

// R/p

commutes, where τ : Ak → A/p is the map classifying Ker Frk.
Remark. Thus, ψk is a “Frobenius lift”, but not in general an endomorphism of R. In our

setting, formal groups of height ≥ 2 are not “ordinary”, i.e., do not have a canonical lift of ker Fr.

8.1. Theorem. There exists a category called (ΛΓ-rings), together with a diagram of functors

(ΛΓ-rings)
forget

//

underlying
((

QFr

underlying
xx

(comm. A-alg.)
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such that (i) (ΛΓ-rings)→ (comm. A-alg.) is monadic and comonadic, and (ii) “forget” induces an
equivalence on the full-subcategories of objects whose underlying ring is p-torsion free.

The functor of the comonad is W = WΓ.
Key example. The ring OGuniv is tautologically a ΛΓ-ring. The maps ψk extend to ring

homomorphisms
Ak

t⊗A OGuniv → Ak
s⊗A OGuniv

which describe Guniv ×sSpf A Spf Ak → Guniv ×tSpf A Spf Ak the universal example of a pk isogeny on
Guniv.

Motivating exmaple. For every topological space X, E0(X) is naturally a ΛΓ-ring.
In fact, for every K(n)-local commutative E-algebra B, π0B is a ΛΓ-ring.

ΛΓ-rings at height 1. Let

κ = Fp, Γ = Ĝm.

Then
A = Zp, Guniv = Ĝm, Ak = Zp.

An object of QFr is a Zp-algebra with endomorphisms ψk : R→ R such that ψk = ψ1 ◦ · · · ◦ ψ1 and

ψk(x) ≡ xpk mod pR. A ΛΓ-ring is precisely a Zp-algebra with p-derivation.
The Morava E-theory in this case is precisely p-adic K-theory Kp.

9. Simplifying results

To even get our hands on WΓ, we need an infinite collecion of rings Ak together with s, t, µ, τ . In
fact things are much better than this, by the following “quadraticity” theorem.

9.1. Theorem (R.). The data (R, {ψk}) of an object of Q are uniquely determined by the following
subset:

(1) an A-algebra map ψ1 : R→ t
A1

s⊗A R, such that
(2) there exists a unique dotted arrow making

R
ψ1

//

��

A1
s⊗A R

id⊗ψ1

��

A2
s⊗A R //

µ⊗id
// A1

s⊗AtA1
s⊗A R

commute.

The Frobenius condition for {ψk} is equivalent to the Frobenius condition for ψ1.

So we just need A1, A2 and the relevant s, t, µ, τ .
Height 2. When n = ht Γ = 2 we can do a little better, by giving a formula for A2.
Given an isogeny f : G → G′ of degree p, there exists a unique dual isogeny f∨ : G′ → G,

defined by:

ker f // //

��

G
f
// G′

f∨

��

G[p] // // G
[p]
// G

The operation (G, i, α, ker f) 7→ (G′, i′, α′, ker f∨) is represented by a ring map

w : A1 → A1.
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The identity f∨f = [p] corresponds to a commutative square:

A2
//
µ
//

γ

��

A1
s⊗AtA1

(w,id)

��

A // s
// A1

where γ represents the operation G 7→ (G[p] ≤ G).
Fact. The above square is a pullback, and remains a pullback after tensoring with s⊗A R.
Thus, the “associativity condition” on ψ1 becomes the existence of a dotted arrow in:

R
ψ1

//

��

A1
s⊗A R

id⊗ψ1��

A1
s⊗AtA1

s⊗A R
(w,id)⊗id��

R // s
// A1

s⊗A R

So to describe objects of QFr, and thus the category of ΛΓ-rings in the height 2 case, we only need

A
s //

t
// A1

w //

τ
��

A1

A/p

Explicit example. Let

κ = F2, Γ = Ĉss, where Css =
(
Y 2Z + Y Z2 = X3

)
,

the formal completion of a supersingular curve. Then

A = Z2[[a]], Guniv =
̂̃
C, where C̃ =

(
Y 2Z + aXY Z + Y Z2 = X3

)
.

Furthermore
A1 = Z2[[a]][d]/(d3 − ad− 2).

Note: P = (d : 1 : −d3) is 2-torsion point, and the Cartier divisor [O] + [P ], O = (0 : 1 : 0), is the divisor of a subgroup.

The maps are given by

s : a 7→ a,

t : a 7→ a′ = a2 + 3d− ad2,

w : a 7→ a′,

: d 7→ a− d2,

τ : a 7→ a,

: d 7→ 0.

From this we can (in principle) completely recover WΓ.
Remark. Yifei Zhu has given similar explicit formulas at p = 3 and p = 5, and has described

the procedure producing formulas at any prime using appropriate elliptic curve data.
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10. Describing WΓ

It is in fact difficult to describe WΓ-explicitly.
For instance, κ = A/m is an A-algebra, so it is naturally to ask about WΓ(κ). I would like to say

A
∼−→WΓ(κ) but I don’t know.
We have an inverse limit W (R) = limnWn(R), and I can describe W1.
Let B1 be the pullback of A-algebras:

B1
//

��

A1

τ
��

A // // A/p

Note: in topology, B1 = E0BΣp.
We have

W1(R) //

��

B1 ⊗A R //

��

A1
s⊗A R

��

R
x 7→xp

// R // R/p

The left-hand square is a pullback of sets (but not generally of rings, since pth power isn’t a ring
map).

If R is p-torsion free, then the right-hand square is a pullback of rings, and therefore the big
rectangle is a pullback of rings.

11. The Koszul theorem

Let me indicate where the quadraticity theorem comes from.
We have a sequence of cochain complexes of A-modules:

C0 : A // 0

C1 : 0 // A1
// 0

C2 : 0 // A2
// A1

s⊗AtA1
// 0

C3 : 0 // A3
//

A2
s⊗AtA1

×
A1

s⊗AtA2

// A1
s⊗AtA1

s⊗AtA1
// 0

The components of the boundary maps are produced using µ, with signs to make it a chain complex.

11.1. Theorem (R.). We have

HqCk ≈ 0 if q 6= k,

while
HkCk ≈ free A-module of rank [ nk ]p.

(Number of k-dimensional subspaces in Fnp .)

That H1Ck = 0 for k > 1 says that the family of maps µ : Ak → Ai
s⊗A tAk−i for fixed k are

injective. This implies that in Q, the higher ψk must be uniquely determined by ψ1.
That H2Ck = 0 for k > 2 then implies that the “associativity” relation on the ψs are forced by

the “first” one.
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Idea of proof. When height =1 this is trivial. When height =2 there is a proof using information
about the moduli of subgroups of elliptic curves found in Katz-Mazur.

For higher height the only proof I know is topological. Namely, let Partm denote the poset of
partitions (=equivalence relations) on {1, . . . ,m}; we exclude the top and bottom elements.

The nerve NPartm is a simplical complex. Write (NPartm)q for the set of q-simplices.

Let m = pk and take E-Borel cohomology of each set of simplices. Then one can show there is an
isomorphism of chain complexes:

E0
[
(NPartpk)•

]
hΣ

pk
/Itr ≈ Ck.

Then you can prove the result for the left-hand side. The key observation is that the functor
X 7→ E0XhΣm/Itr on Σm-sets is a Mackey functor. The vanishing result we need is in a paper by
Arone, Dwyer, Lesh. �

Department of Mathematics, University of Illinois, Urbana, IL
E-mail address: rezk@illinois.edu


