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GENERALIZATIONS OF WITT VECTORS IN ALGEBRAIC TOPOLOGY

CHARLES REZK

ABSTRACT. Witt vector constructions (both integral and p-adic) are the underlying functors of the
comonads which define A-rings and p-derivation rings, which arise algebraic structures on certain
K-theory rings. In algebraic topology, this is a special case of structure that exist for a number
of generalized cohomology theories. In this talk I will describe the analogue of this structure
for “Morava FE-theories”, which are cohomology theories associated to universal deformations of
1-dimensional formal groups of finite height.

1. INTRODUCTION

Talk for the workshop on “Witt vectors, Deformations, and Anabelian Geometry” at U. of
Vermont, July 16-21, 2018.

The goal of this talk is to describe some generalizations of “Witt vectors” and “A-rings” which
show up in algebraic topology, in the guise of algebras of “power operations” for certain cohomology
theories. I won’t dwell much on the algebraic topology aspect: the set-up I describe arises directly
from the arithemetic algebraic geometry of formal groups and isogenies.

comonad algebra group object cohomology theory
W (big Witt) A-rings Gm (equivariant) K-theory
W, (p-typical Witt) | p-derivation ring ([A}m K-theory w/ p-adic coeff
77 T-algebra universal def. of fg Morava E-theory
77 77 certain p-divisible group | K (h)-localization of Morava E-theory
77 77 elliptic curves (equivariant) elliptic cohomology
77 77 Tate curve (equivariant) Tate K-tehory.

There are other examples, corresponding to certain p-divisible groups (local), or elliptic curves (global).
The case of Morava FE-theory was observed by Ando, Hopkins, and Strickland, together with
some contributions by me.

2. A-RINGS

A-rings were invented by Grothendieck! to formalize certain operations on vector bundles, or
representations. Thus,

A"V = nth exterior power of V,

satisfying various conditions. For instance, for direct sum:
ATV W) =Y NV RATTITW
There are also formulas for exterior power of tensor product and for composition of exterior powers:
A"(V ® W) = polynomial in A'V, AW,
A™A™V = polynomial in A*V.
These polynomials involve possibly negative integer coefficients, so we must regard these as acting on a Grothendieck ring, e.g., K°X
or RG.
The forgetful functor
(A-rings) — (commutative rings)

Date: July 20, 2018.
1By which I mean what he called “special A-rings”
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has both a left and right adjoint, and in fact is both monadic and comonadic. The functor of the
comonad is the big Witt vector construction. A-rings are precisely “coalgebras” for this comonad.

3. ADAMS OPERATIONS AND FROBENIUS LIFTS

Other operations on A-ring R are symmetric powers ¢, which can be expressed (on a Grothendieck
group) in terms of exterior powers. We also have Adams operations ¢ (V).

> )it = (X ) (-n*) 1:exp[z o],
k>0 k>0 m>1
Taking a log-derivative gives 9™ (V) = polynomial in A*(V) with Z-coefficients. Adams observed:
(1) 9™ are ring homomorphisms,
(2) Py =pmn,
(3) YP(x) = 2P mod pR if p prime.
That is, 9P is a lift of Frobenius for each prime, and lifts for different primes commute.
Note that A*(z) = polynomial in 4™ (z) with Q-coefficients, so a A-ring structure is determined
by Adams operations rationally.
There is a partial converse.

3.1. Theorem (Wilkerson). Let R be a commutative ring equipped with functions ¥™: R — R
satisfying the above conditions (1)—(3). If R is torsion free, then there exists a unique \-ring
structure on R with the given ¥™s as the Adams operations.

It turns out that a free A-ring on a set of generators is torsion free as an abelian group (in fact,
it’s a polynomial ring). This means that the entire theory of A-rings can be recovered from the
theory of Ps.

4. MULTIPLICATIVE GROUP

Consider the representation ring of the circle:
R(U(1)) =Z[T, T7Y.
Multiplication p: U(1) x U(1) — U(1) is a homomorphism, so we get a coproduct
' RUM) - RUQ)xUQ)~RU))® RU(L)).
This Hopf algebra is the ring of functions on Gy, i.e.,
Gy, = Spec R(U(1)).

The Adams operations ¥™, n > 1 thus give rise to endomorphisms of the group scheme G,,. A
straightforward calculation (¢"(T") = T"™) shows that the endomorphism is [n]: G, = Gy,.
Note that on (G,,)F,, the endomorphism [p] is also the Frobenius.

(Remark: in complex K-theory, there is also a 171, corresponding to complex conjugation. This induces [=1] on G,,.)

5. POWER OPERATIONS

To see how this generalizes, we look at a different construction of ™. First note the “total mth
power” operation:

Pp(V):=VE" =3 "pr@0x(V),  Pn: K°(X) = RS, @ K°(X),

sum over irreps w of X,.

— L m _\m
® Otriv — O ,andasign—/\ .

e Y (dimpy)og(V) =VE™,
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It turns out that every or S Z[)\k, k Z 1] See Atiyah, “Power operations in K-theory”.
The power construction is multiplicative: (V @ W)®" ~ V& @ W™ It is not additive; instead:

®m _ ®i ®j 4Zm
(V4mW)om= 3 VIaW 15,
i+j=m
The failure of additivity comes from induced representations from proper subgroups ¥; X ¥, —; © Y.
We can get a ring homomorphism by quotienting by the “transfer ideal”:

KO(x) L RS, ® KO(X) = (RS, /1) ® KO(X) ~ Z @ K°(X).

This gives the Adams operation ¥, which is a ring homomorphism.

6. POWER OPERATIONS FOR COMMUTATIVE RING SPECTRA

The above analysis is specific to K-theory, but there is a class of cohomology theories which allow
us to do something similar, namely those arising from commutative ring spectra, also called
E-ring spectra. For such E we have

E°(X) £ EO(BY,, x X) &5 E%(BY,,) ®@popt) EYN(X) = E%(BSm) /It ®po(pry EY(X).
The function P, is a refinement of the ordinary mth power map = — ™.
In certain cases, the second map is an isomorphism, in which case we get a ring homomorphism
E%(X) = E°(BEn) /I ® o) E°(X).
Example. If £ = HF5 is ordinary mod 2 cohomology, and m = 2, then I;; = 0, and we get the

classical Steenrod operations.
Example. Let Y = K, the p-completion of the complex K-theory spectrum. Then

Z, if m=pF
K%BY ) /Iy~ ?
p( pk)/ ’ {0 else.

We get natural ring maps
7 KO(X) = K9(X) © KY(BE,.)/T = KJ(X).
One has that KJ(BY,) = Z, ® Zy, so that the total operation is
By(x) = (Y"(z), §(x)),

where ¢P(x) = 2P + pd(x). One can show that the entire structure the P,,s produce in this case are
exactly a “ring with p-derivation”. R

The object KJ(BU(1)) ~ Z[t] ~ Oz is functions on the formal multiplicative group G,.
On this ¢pk realize [p¥]: Gm — G-

7. THE DEFORMATION CATEGORY

I now describe how this works out for a family of theories called Morava E-theory.
Fix

e 1 perfect field char p,

e I" one-dimensional formal group of finite height n over k.

Deformations. Given a complete local ring R, a deformation of I'/k to R is data

(G/R, i:k— R/m, a:i'l = GR/m).
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G is a formal group over R, and we have

G Go 2 i*T r
Spf R +—— Spec R/m —— Spec R/m — Spec k

G = special fiber of G — Spf R. (If k = F), we can ignore 1.)
Isogenies. Consider isogenies of formal groups over R.

Ker f G ! G

G/ Ker f
Ker f is a finite subgroup scheme of G. Up to canonical isomorphism, the data of f is the same as

the data of the pair (G, Ker f).
Deformation structures can be pushed forward along isogenies using relative Frobenius:

a—1 ¢

(i, ) —— (i, o)

with deg f = p*, where i/ =i o0 ¢* and

Go— s al

¢
a|~ ~ 13
|

i*T —— (i 0 o®)*T
Frk

where o(x) = xP is absolute Frobenius.
Category of deformations and isogenies. For each R we get a category

obj: deformations (G,i, a),
mor: f: G — G st (i,a) — (I, ).

Defp(R) = {

Fact. Defr is representable:

fA
Defp = Sp ’
We have A = Ag. The category structure is encoded by ring maps:
S
AT T A, Apse — A’ @41 A

t
Spf A is the Lubin-Tate deformation space of I'/k, so that
(iso classes of (G, i, «)) =~ (local homomorphisms A — R).
There is a universal deformation (Gupniv,?, @) to A, and a non-canonical isomorphism
A~ Wyklar,...,an-1], n=htT.

If two deformations are isomorphic, they are so by a unique isomorphism.

Spf Ay, carries the universal example of subgroup of rank p* of a deformation:

(iso classes of (G,i,a, H < G), tkH = pk) ~ (local homomorphisms A; — R).
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This was shown to exist by Strickland. Finite subgroups of formal groups.” Note that s: A — Ay is finite
and flat.

Frobenius. If F,, C R, then for a deformation (G, %, &) there is a canonical subgroup Ker < @
of rank p*, where Fr¥: G — (0%)*G is p*th power relative Frobenius. This is represented by a map
T: A — A/p.

Morava E-theory. For each I'/k, there is a generalized cohomology theory E called Morava
E-theory with
EO(pt) = A.
E*(pt) = Alp™], |p| = 2. (“Even periodic”.)
E%(BU(1)) = Og,,,,, the ring of functions on the universal deformation of I'/.

E is a commutative ring spectrum (the “Goerss-Hopkins-Miller” theorem).
E°(BX.)/Iir = Ay, (Strickland, “Morava E-theory of symmetric groups”.)

8. Ar-RINGS

From the above category we produce an analogue of Witt vectors and A-rings, which I’ll call
I'~-Witt vectors and Ap-rings.
We define categories
Q = QCohg;,,(Defr) 2 Q™
as follows. A quasicoherent sheaf of commutative rings on Defr is data

consisting an A-alegbra A — R, maps
Vi R—'"A®4 R
of A-algebras (where the target gets its A-algebra structure from ¢: A — Ay), and such that

R— " AfouR

%HJ, lid ®y

A’ @A R—— A" ®@4"A @4 R
p®id
Such an object satisfies the Frobenius congruence if
wk s
R—— A°®4 R

lr®id
Alp@a R

commutes, where 7: A, — A/p is the map classifying Ker Fr”.
Remark. Thus, ¢y is a “Frobenius lift”, but not in general an endomorphism of R. In our
setting, formal groups of height > 2 are not “ordinary”, i.e., do not have a canonical lift of ker Fr.

8.1. Theorem. There exists a category called (Ar-rings), together with a diagram of functors

forget
(Ar-rings) e o

um %ﬂying

(comm. A-alg.)
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such that (i) (Ap-rings) — (comm. A-alg.) is monadic and comonadic, and (ii) “forget” induces an
equivalence on the full-subcategories of objects whose underlying ring is p-torsion free.

The functor of the comonad is W = Wr.
Key example. The ring Og is tautologically a Ap-ring. The maps v extend to ring
homomorphisms

univ

At ®a Og, — Ak°®4 Og
which describe Guniv xgpf 4 Spf Ay, = Guniv xgpf 4 Spf Ay, the universal example of a Pk isogeny on
Guniv-

Motivating exmaple. For every topological space X, E°(X) is naturally a Ap-ring.

univ univ

In fact, for every K(n)-local commutative E-algebra B, moB is a Ar-ring.

Ar-rings at height 1. Let
k=F, T =Gpn.
Then R
A =7y, Guniv = Gy, A = Zp.
An object of QF is a Zy,-algebra with endomorphisms 1) : R — R such that 1, =11 0--- 0 and
Yrp(z) = 27" mod pR. A Ap-ring is precisely a Z,-algebra with p-derivation.
The Morava E-theory in this case is precisely p-adic K-theory K.

9. SIMPLIFYING RESULTS

To even get our hands on Wr, we need an infinite collecion of rings Aj together with s, ¢, u, 7. In
fact things are much better than this, by the following “quadraticity” theorem.

9.1. Theorem (R.). The data (R,{¢r}) of an object of Q are uniquely determined by the following
subset:

(1) an A-algebra map ¥1: R — "A1*®4 R, such that

(2) there exists a unique dotted arrow making

R— Y L ASouR

|
\ Jid @1
1
A’ @4 R—— A1°®4"A1° @4 R
p®id
commute.
The Frobenius condition for {1y} is equivalent to the Frobenius condition for 1.

So we just need A1, Ao and the relevant s,t, u, 7

Height 2. When n = ht ' = 2 we can do a little better, by giving a formula for As.

Given an isogeny f: G — G’ of degree p, there exists a unique dual isogeny fV: G’ — G,
defined by:

kerf>—>G*>G/
\

|
4
G[p]>—>G—>G

The operation (G, i, a, ker f) — (G',#,’, ker fV) is represented by a ring map
w: A1 — Al.
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The identity fVf = [p] corresponds to a commutative square:

A2>L> A15®AtA1

’YJ l(w,id)

Ar—r— Ay

where 7 represents the operation G — (G[p] < G).
Fact. The above square is a pullback, and remains a pullback after tensoring with *®4 R.
Thus, the “associativity condition” on )7 becomes the existence of a dotted arrow in:

R— S A®AR
: lidey
| A*®4"A1"®4 R
L 1 (wid)®id
Rr— A°®4 R
So to describe objects of Q. and thus the category of Ap-rings in the height 2 case, we only need

A A1L>A1

t
JT
Alp
Explicit example. Let
k=Fy, [=0C  where Cyx= (Y2Z+YZ?=X5),

the formal completion of a supersingular curve. Then

A=17Za], Guiv=C, whereC = (Y2Z+aXYZ+YZ?=X?).
Furthermore
Ay = Zs[a][d)/(d® — ad — 2).
Note: P = (d:1:—d®) is 2-torsion point, and the Cartier divisor [O] + [P], O = (0 : 1: 0), is the divisor of a subgroup.
The maps are given by

s:aw>a,
t:aw— a =a®+ 3d — ad®?,
w:a—d,
cd—a—d?,
T:aw>a,
:d— 0.

From this we can (in principle) completely recover Wr.
Remark. Yifei Zhu has given similar explicit formulas at p = 3 and p = 5, and has described
the procedure producing formulas at any prime using appropriate elliptic curve data.
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10. DESCRIBING WTr

It is in fact difficult to describe Wr-explicitly.

For instance, K = A/m is an A-algebra, so it is naturally to ask about Wr (k). I would like to say
A = Wr(k) but I don’t know.

We have an inverse limit W(R) = lim,, W, (R), and I can describe W.

Let By be the pullback of A-algebras:

31*>A1

L

A—»Alp

Note: in topology, By = E°BY,,
We have
Wi(R) —— B ®4 R—— A1°®4 R

I

R R/p

P
The left-hand square is a pullback of sets (but not generally of rings, since pth power isn’t a ring
map).
If R is p-torsion free, then the right-hand square is a pullback of rings, and therefore the big
rectangle is a pullback of rings.

11. THE KOSZUL THEOREM

Let me indicate where the quadraticity theorem comes from.
We have a sequence of cochain complexes of A-modules:

cO: A——0

ct: 0 Ay 0

CQZ 0 AQ A18®AtA1 —0
A @4 A

63: 0*>A3*> X *>A18®AtA15®AtA1*>O
AP @4 Ay

The components of the boundary maps are produced using p, with signs to make it a chain complex.

11.1. Theorem (R.). We have
Hqu ~0 ifq £k,
while
HiCF ~ free A-module of rank (%],

(Number of k-dimensional subspaces in F}.)

That H,C*¥ = 0 for k > 1 says that the family of maps pu: A, — A;° @4t Ag_; for fixed k are
injective. This implies that in Q, the higher ¥ must be uniquely determined by ;.

That HoC* = 0 for k > 2 then implies that the “associativity” relation on the s are forced by
the “first” one.
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Idea of proof. When height =1 this is trivial. When height =2 there is a proof using information
about the moduli of subgroups of elliptic curves found in Katz-Mazur.

For higher height the only proof I know is topological. Namely, let Part,, denote the poset of
partitions (=equivalence relations) on {1,...,m}; we exclude the top and bottom elements.

The nerve NPart,, is a simplical complex. Write (NPart,,), for the set of g-simplices.

Let m = p* and take E-Borel cohomology of each set of simplices. Then one can show there is an
isomorphism of chain complexes:

E°[(NPart,.),] ny /o ck.
Then you can prove the result for the left-hand side. The key observation is that the functor

X — E°X},x /Ii; on ¥,,-sets is a Mackey functor. The vanishing result we need is in a paper by
Arone, Dwyer, Lesh. O
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