A STREAMLINED PROOF OF GOODWILLIE'S *n*-EXCISIVE APPROXIMATION

CHARLES REZK

ABSTRACT. We give a shorter proof of Lemma 1.9 from Goodwillie, "Calculus III", which is the key step in proving that the construction $P_n F$ gives an *n*-excisive functor.

1. INTRODUCTION

For a homotopy functor F from spaces to spaces, Goodwillie has defined the notion of an "*n*-excisive approximation", which is a homotopy functor P_nF together with a natural transformation $p_nF: F \to P_nF$. In [Goo03, Thm. 1.8] it is shown that the functor P_nF is in fact an *n*-excisive functor, and therefore that p_nF it is the universal example of a map from F to an *n*-excisive functor. The notable feature of this proof is that no hypotheses involving connectivity are needed. Goodwillie's proof relies on a clever lemma [Goo03, Lemma. 1.9], which is, as he notes, "a little opaque".

The purpose of this note is to give a streamlined proof of Goodwillie's lemma. Our proof uses his ideas, but is simpler, and we believe less opaque. We will assume that the reader is familiar with [Goo03], and we assume the context and notation of §1 of that paper.

2. Lemma 1.9 of Calculus III

Let $\mathcal{P}(n)$ denote the poset of subsets of $\{1, \dots, n\}$, and let $\mathcal{P}_0(n) \subset \mathcal{P}(n)$ be the poset of non-empty subsets.

If $F: \mathcal{C} \to \mathcal{D}$ is a homotopy functor, Goodwillie define a functor $T_n F: \mathcal{C} \to \mathcal{D}$ and natural map $t_n F: F \to T_{n-1} F$ by

$$F(X) \xrightarrow{t_n F} \operatorname{holim}_{U \in \mathcal{P}_0(n+1)} F(X * U).$$

2.1. Lemma. Let \mathcal{X} be any strongly cocartesian n-cube in \mathcal{U} , and let F be any homotopy functor. The map of cubes $(t_n F)(\mathcal{X}): F(\mathcal{X}) \to (T_n F)(\mathcal{X})$ factors through some cartesian cube.

Proof. We write n instead of n + 1. Given any cube \mathcal{X} and a set $U \in \mathcal{P}(n)$, define a cube \mathcal{X}_U by

$$\mathcal{X}_U(T) = \operatorname{hocolim}\left(\mathcal{X}(T) \leftarrow \prod_{s \in U} \mathcal{X}(T) \rightarrow \prod_{s \in U} \mathcal{X}(T \cup \{s\})\right).$$

We have $\mathcal{X}_{\emptyset}(T) \approx \mathcal{X}(T)$, and there is an evident map $\alpha \colon \mathcal{X}_U(T) \to \mathcal{X}(T) * U$, which is natural in both T and U.

Date: December 6, 2008.

The map $(t_{n-1}F)(\mathcal{X})$ factors as follows:

 $F(\mathcal{X}(T)) \to \operatorname{holim}_{U \in \mathcal{P}_0(n)} F(\mathcal{X}_U(T)) \to \operatorname{holim}_{U \in \mathcal{P}_0(n)} F(\mathcal{X}(T) * U) \approx (T_{n-1}F)(\mathcal{X}(T)).$

Now suppose that \mathcal{X} is strongly cocartesian. Then there are natural weak equivalences $\mathcal{X}_U(T) \approx \mathcal{X}(T \cup U)$. The maps $\mathcal{X}(T \cup U) \to \mathcal{X}(T \cup \{s\} \cup U)$ are isomorphisms for $s \in U$, and thus if U is non-empty the cube $T \mapsto F(\mathcal{X}_U(T))$ is cartesian. Therefore holim_{$U \in \mathcal{P}_0(n)$} $F(\mathcal{X}_U(T))$ is a homotopy limit of cartesian cubes, and thus is cartesian. \Box

Note that this shows that if T is non-empty, then $U \mapsto F(\mathcal{X}_U(T))$ is cartesian, so that $F(\mathcal{X}(T)) \to \operatorname{holim}_{U \in \mathcal{P}_0(n)} F(\mathcal{X}_U(T))$ is a weak equivalence for $T \neq \emptyset$. For $T = \emptyset$, we see that $\operatorname{holim}_{U \in \mathcal{P}_0(n)} F(\mathcal{X}_U(\emptyset)) \approx \operatorname{holim}_{U \in \mathcal{P}_0(n)} F(\mathcal{X}(U))$.

References

[Goo03] Thomas G. Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003), 645–711 (electronic). MR MR2026544

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL $E\text{-}mail\ address:\ \texttt{rezk@math.uiuc.edu}$