
FREE COLIMIT COMPLETION IN ∞-CATEGORIES

CHARLES REZK

Abstract. We show how several useful properties of Ind-constructions in ∞-categories extend to
arbitrary free colimit completion constructions.

1. Introduction

It is well-known that the ∞-category PSh(C) of presheaves of ∞-groupoids on C is the “free
colimit completion” of C. More generally, there is a “free F-colimit completion” PShF(C) for a
given class F of ∞-categories, which can be exhibited as the full subcategory of PSh(C) generated
by representable presheaves under F-colimits, as described by Lurie in [Lur09, 5.3.6]. Note that
“free” here means we are not merely adjoining some colimits, but rather that the construction is
characterized by a universal property.

In special cases we have more. For instance, when F is the class of κ-filtered ∞-categories for
some regular cardinal κ, then the free F -colimit completion admits a rather more explicit description:
it is Indκ(C), the full subcategory of presheaves X on C which represent a right fibration C/X → C
such that C/X is κ-filtered. Here C/X is the “point category” of the functor X : Cop → S.

Furthermore, there is a very useful “recognition principle” for such categories: any ∞-category A
which is generated under κ-filtered colimits by a full subcategory C ⊆ A of “κ-compact objects” is
canonically equivalent to Indκ(C) [Lur09, 5.3.5]. These Ind-categories are the basis of the theory of
accessible ∞-categories.

This note addresses the question: to what extent can these pleasant properties of Indκ(C) be
extended to arbitrary free colimit completions? The answer is: in some sense, pretty much all of
them. Our results are encapsulated by the following observation.

Whether a presheaf X is in PShF (C) depends only on its point category C/X.

Here is a brief summary.

• Any class F of small ∞-categories can be enlarged to a filtering closure F , which consists of
C whose free F -colimit completion PShF (C) contains a terminal presheaf (§5). We say that
F is a filtering class when F = F (§4).
• We get an explicit criterion for describing the free F -colimit completion PShF (C) ⊆ PSh(C)

as a full subcategory, much as for Indκ(C): a presheaf X is in PShF (C) if and only if C/X
is in the filtering closure of F , where C/X → C is the right fibration classified by X (5.2).
• Thus free F-colimit completion depends only on the filtering closure F , and in fact the

filtering classes precisely correspond to possible “types” of free colimit completion (6.7).
• We find that any ∞-category which has all F-colimits also has all F-colimits, and any

functor between such which preserves all F -colimits also preserves all F -colimits (6.4), (6.5).
• In the context of fully faithful functors, the previous is in some sense the best possible: F is

the largest class for which we can have such a result (6.2).
• The ∞-groupoids in a filtering class F , as well as the the underlying weak homotopy types

of objects of F , are precisely those in the full subcategory of ∞-groupoids generated by the
terminal object under F-colimits (7.1).
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• There is a recognition principle for free F-colimit completion generalizing that for Ind-
categories, which is stated in terms of the evident notion of F-compact object. (9.2).
• It is straightforward to produce examples of filtering classes, which include the familiar

classes of κ-filtered and sifted ∞-categories, but also many others which have not been much
studied (§8, §10).

Given all this, it would be very desirable to have methods for calculating filtering closures of various
classes of interest. Further study is needed!

I came to this while working on a project to understand generalizations of Ind-constructions and
accessible ∞-categories, motivated by the 1-categorical work of [ABLR02]. The idea is to look at
classes F of∞-categories characterized by how F -colimits of∞-groupoids preserve a fixed collection
of types of limit [Rez21], e.g., much as κ-filtered colimits preserve κ-small limits of ∞-groupoids, or
sifted colimits preserve finite products of ∞-groupoids. In the course of this I realized that for many
purposes there is nothing special about classes described in terms of such limit preservation. It is
fair to say that none of the results here are particularly deep, but the picture they make is pleasant
and perhaps surprising. I note that there is every reason to expect that most of the ∞-categorical
results described here have 1-categorical analogues. However, I have not attempted to trace this out
explicitly.

Thanks to Maxime Ramzi for help with (§11), and others on the algebraic topology Discord
server who answered my queries, including Tim Campion and Dylan Wilson.

2. Basic ∞-categorical notions

2.1. Universes. We work with respect to a chosen universe of small simplicial sets, which
determines an∞-category Cat∞ of small∞-categories, together with a full subcategory S ⊆ Cat∞
of small ∞-groupoids. We say that an ∞-category is locally small if its mapping spaces are
equivalent to small ∞-groupoids.

We also discuss ∞-categories which are not small. These may be imagined to live in some higher
universe, but I will not need to refer explicitly to a hierarchy of universes as in [Lur09, 1.2.15].
However, some of the results I use do rely on universe-hopping, most notably Lurie’s construction
of free colimit completions (3.3), and his related embedding theorem (3.4).

2.2. Colimits. By a small colimit, I mean a colimit of a functor J → A where J is a small
∞-category. I say that an ∞-category A is cocomplete if it has all small colimits, and complete
if it has all small limits.

More generally given a class F of∞-categories I will speak of F-colimits, i.e., colimits of functors
J → A where A ∈ F . Thus, I can speak of an ∞-category A which has F-colimits, i.e., is such
that every J → A with J ∈ F admits a colimit.

Given a fully faithful functor f : A→ B (e.g., the inclusion of a full subcategory), I say that f is
stable under F-colimits if (i) both A and B have F-colimits and (ii) f preserves all F-colimits.

2.3. Presheaves. Given a small ∞-category C, we write PSh(C) := Fun(Cop, S) for the category
of presheaves of ∞-groupoids on C (rather than Lurie’s notation P(C) of [Lur09, 5.1]). I denote
the Yoneda functor by ρC : C → PSh(C), or just ρ if the context is clear. Recall that ρ is fully
faithful and that PSh(C) is complete and cocomplete.

2.4. Slices of presheaves. Given a presheaf X ∈ PSh(C), I write

C/X := C ×PSh(C) PSh(C)/X

for the evident pullback of the slice projection PSh(C)/X → PSh(C) along ρ, and πX : C/X → C
for the evident projection. The composite ρCπX : C/X → PSh(C) comes with an extension to
a colimit functor ρ̃ : (C/X)B → PSh(C)/X , which exhibits X tautologically as a colimit of ρπX
[Lur09, 5.1.5.3].



FREE COLIMIT COMPLETION IN ∞-CATEGORIES 3

In particular, the colimit of ρ : C → PSh(C) is a terminal presheaf, since C/1 ≈ C.

2.5. Remark. C/X may be regarded as an “∞-category of elements” or point category of X,
by analogy with the 1-categorical analogue. The projection πX : C/X → C is a right fibration,
representing the unstraightening of the functor X : Cop → S.

The evident functor C/X → PSh(C)/X induces by restriction an equivalence

κ : PSh(C)/X → PSh(C/X),

i.e., every slice of a presheaf category is a presheaf category on a category of elements [Lur09, 5.1.6.12].

Finally, note that if X ∈ PSh(C) and Ỹ := (f : Y → X) ∈ PSh(C)/X , then we have an equivalence

(PSh(C)/X)
/Ỹ
≈ PSh(C)/Y ,

which when combined with the equivalence κ : PSh(C)/X ≈ PSh(C) restricts to an equivalence of
full subcategories

(C/X)/Ỹ ≈ C/Y.

3. Free colimit completion

The Yoneda functor ρ : C → PSh(C) exhibits the free colimit completion of C.

3.1. Theorem. [Lur09, 5.1.5.6] For any cocomplete ∞-category A, restriction along ρ induces an
equivalence

Fun(PSh(C), A) ⊇ Funcolim(PSh(C), A)→ Fun(C,A)

from the category of colimit preserving functors PSh(C)→ A to the category of functors C → A.

In particular, any functor f : C → A admits an essentially unique extension f̂ : PSh(C)→ A to

a colimit preserving functor equipped with a natural isomorphism f̂ρ ≈ f .

As a consequence, PSh(C) contains the universal C-colimit, which is just the terminal presheaf.

3.2. Corollary. Let f : C → A be any functor from a small ∞-category to a cocomplete ∞-category.

Then the colimit of f in A is equivalent to f̂(1), where f̂ : PSh(C)→ A is any colimit preserving
extension of f along ρ.

Proof. Since f̂ : PSh(C)→ A preserves colimits, and 1 ≈ colimC ρ. �

Let F ⊆ Cat∞ be a class of small ∞-categories. Given a small ∞-category C, let PShF(C) ⊆
PSh(C) denote the full subcategory generated by representable presheaves under F-colimits.
That is, PShF (C) is the smallest full subcategory of presheaves which (i) contains the image of the
Yoneda functor ρ : C → PSh(C) and (ii) is stable under F -colimits. The restriction ρ : C → PShF (C)
exhibits the free F-colimit completion of C.

3.3. Theorem. [Lur09, 5.3.6.2] If F ⊆ Cat∞ is a class of small ∞-categories, and if A is an
∞-category which has F-colimits, then restriction along ρ exhibits an equivalence

Fun(PShF (C), A) ⊇ FunF−colim(PShF (C), A)→ Fun(C,A)

from the category of F-colimit preserving functors PShF (C)→ A to Fun(C,A).

In particular, any functor f : C → A admits an essentially unique extension f̂ : PShF (C)→ A

to an F-colimit preserving functor equipped with a natural isomorphism f̂ρ ≈ f .

We refer to Lurie for the proof, but note that his proof both provides and relies on the following,
which we will use later.

3.4. Theorem (Embedding theorem). [Lur09, 5.3.6.2] Given any classes F ⊆ G of ∞-categories
and an ∞-category A which has F-colimits, there exists a fully faithful functor i : A� B such that
(i) B has all G-colimits and (ii) i preserves all F-colimits.
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Sketch proof. Construct B as a full subcategory (in fact, a localization) of Fun(Aop, Ŝ) where S is
an ∞-category of ∞-groupoids in a suitably large universe. �

4. Filtering classes

Let F ⊆ Cat∞ be a class of small ∞-categories. Note that if C ∈ F then necessarily PShF(C)
contains the terminal presheaf, since the terminal presheaf is the colimit of ρC (2.4).

We say that F is filtering if the converse is also true, i.e., if for every small ∞-category C, we
have that C ∈ F whenever PShF (C) contains the terminal presheaf.

4.1. Remark. Since PShF(C) contains every representable presheaf, any terminal object of it is
necessarily equivalent to the terminal presheaf of PSh(C). So in the definition of filtering class we
could equally say “C ∈ F whenever PShF (C) contains a terminal object”.

For a filtering classes we have an explicit criterion for identifying objects of PShF (C).

4.2. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories. The following are equivalent.

(1) For all C ∈ Cat∞ and X ∈ PSh(C), we have that X ∈ PShF (C) if and only if C/X ∈ F .
(2) F is a filtering class.

Proof. (1) =⇒ (2). If 1 ∈ PSh(C) is a terminal presheaf then C/1 ≈ C. Specializing (1) to such
objects says that 1 ∈ PShF (C) implies C ∈ F , which is precisely the condition that F is filtering.

(2) =⇒ (1). For any C ∈ Cat∞, define the full subcategory

IndF (C) := {X ∈ PSh(C) | C/X ∈ F }.
Note that we always have IndF(C) ⊆ PShF(C), even if F is not filtering, since every presheaf

X ∈ PSh(C) is tautologically a colimit of the composite C/X
π−→ C

ρ−→ PSh(C) (2.4).
I will show that if F is filtering, then (a) ρ(C) ⊆ IndF (C), and (b) IndF (C) ⊆ PSh(C) is stable

under F-colimits. This implies that IndF (C) = PShF (C), which is precisely condition (1).
(a) If C is any small ∞-category with a terminal object t, then ρ(t) ∈ PSh(C) is a terminal

presheaf contained in PShF (C). Since F is filtering it contains all such C. The claim follows since
for any representable presheaf ρ(c) ∈ PSh(C) the category C/ρ(c) ≈ C/c has a terminal object.

(b) Let f ′ : JB → PSh(C) be a colimit diagram such that J ∈ F and f = f ′|J takes values in
IndF (C), and write X := f ′(v) ∈ PSh(C) for the value at the cone point, i.e., the colimit of f . To
show that X ∈ IndF (C) we must show that C/X ∈ F , i.e., that PShF (C/X) contains the terminal
presheaf.

Under join/slice-adjunction the functor f ′ corresponds to a functor g′ : J → PSh(C)/X , whose
colimit is the terminal object of the target. Let g : J → PSh(C/X) be the composite of g′ with the

equivalence κ : PSh(C)/X
∼−→ PSh(C/X) (2.4). I will show that g(J) ⊆ IndF (C/X), and therefore

that g(J) ⊆ PShF (C/X) since IndF (C/X) ⊆ PShF (C/X). The claim will follow since the colimit
of g in PSh(C/X) is the terminal object.

To finish the proof, we use the fact that if f : Y → X is an object of PSh(C)/X , and Ỹ := κ(Y ) ∈
PSh(C/X) is its image, then we have an equivalence (2.4)

(C/X)/Ỹ ≈ C/Y.

Thus Y ∈ IndF(C) if and only if Ỹ ∈ IndF(C/X). Therefore f(J) ⊆ IndF(C) implies g(J) ⊆
IndF (C/X) as desired. �

5. Filtering closure

Let F ⊆ Cat∞ be any class of small ∞-categories. The filtering closure of F is defined to be
the class

F := {C ∈ Cat∞ | PShF (C) contains a terminal presheaf }.
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5.1. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories. We have the following.

(1) F ⊆ F .
(2) For any small ∞-category C, the F-colimit completion PShF(C) of C is stable under
F-colimits of presheaves.

(3) For any small ∞-category C, we have PShF (C) = PShF (C).

Proof. (1) If C ∈ F , then 1 ≈ colimC ρ ∈ PShF (C), whence C ∈ F .
(2) Suppose f : J → PShF (C) ⊆ PSh(C) is some functor where J ∈ F . By the universal property

of free F-colimit completion (3.3) f extends along ρ : J � PShF(J) to an F-colimit preserving

functor f̂ : PShF(J) → PShF(C). Since J ∈ F we have 1 ∈ PShF(J), whence f̂(1) ∈ PShF(C).

We are done, since f̂(1) is exactly the colimit of f in PSh(C) (3.2).

(3) Since F ⊆ F by (1) we have PShF (C) ⊆ PShF (C), and thus (2) implies equality. �

Using this we get a general criterion for identifying objects of PShF (C).

5.2. Corollary. Let F ⊆ Cat∞ be a class of small ∞-categories. Then X ∈ PShF (C) if and only if
1 ∈ PShF (C/X).

Proof. Immediate from (5.1)(3), the criterion (4.2)(1), and the definition of F . �

5.3. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories. Then F is a filtering class, and
is in fact the smallest filtering class containing F . In particular, F is filtering if and only if F = F .

Proof. We have already noted (5.1)(1) that F ⊆ F . That F is a filtering class is immediate from

(5.1)(3), since C ∈ F if and only if 1 ∈ PShF (C) = PShF (C).
Suppose F ′ is any filtering class which contains F . Then for any J ∈ F we have

1 ∈ PShF (C) = PShF (C) ⊆ PShF
′
(C),

and thus F ⊆ F ′.
The final claim is immediate. �

In the following I write PShF(C)/X := PShF(C) ×PSh(C) PSh(C)/X . This is a slight abuse of

notation, since X might not be an object of PShF (C).

5.4. Corollary. For any class F ∈ Cat∞, any C ∈ Cat∞, and any presheaf X ∈ PSh(C), the equiv-
alence κ : PSh(C)/X → PSh(C/X) identifies the full subcategories PShF (C)/X and PShF (C/X).

Proof. We can use the criterion (5.2) to determine whether objects are contained in PSh(C)F and
PSh(C/X)F . The claim follows immediately using the observation (2.4) that if κ sends f : Y → X

to Ỹ , then C/Y ≈ (C/X)/Ỹ . �

5.5. Remark. We note that there is a more direct proof of (5.4), which in turn gives another route
to proving (5.2), since the conclusion of (5.4) immediately implies that X ∈ PShF (C) if and only if
1 ∈ PShF (C/X).

Here is a sketch of a direct proof of (5.4). Given a fully faithful functor r : C � A with A
cocomplete, let AFr ⊆ A be the smallest subcategory containing r(C) and stable under F-colimits.
This is a union

AFr =
⋃
λ

Aλr

of subcategories indexed in an evident way by ordinals, i.e., so that A0 = r(C), Aλ =
⋃
µ<λA

µ if λ

is a limit ordinal, and Aλ+1
r is the full subcategory of A spanned by the objects of Aλr together with

all objects which are colimits in A of functors J → Aλr with J ∈ F ,
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Now suppose given a pullback square of ∞-categories

C //
r //

p
��

A

u
��

C ′ //
r′
// A′

such that r and r′ are fully faithful and A′ is cocomplete, and with with the property that a functor
f : JB → A is a colimit if and only if uf is a colimit. Then it is straightforward to show by induction

on λ that AFr = u−1(A′Fr′). Then apply this to u : PSh(C)/X → PSh(C) and p : C/X → C.

6. Properties of the filtering closure

6.1. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories, and let A′ ⊆ A be a full
subcategory of a cocomplete ∞-category A. If A′ is stable under F-colimits, then it is also stable
under F-colimits.

Proof. Given any functor f : J → A′ with J ∈ F , we want to show that the colimit of f in
A is actually in A′. By the universal property f extends over ρ : J � PSh(J) to a colimit

preserving functor f̂ : PSh(J) → A, so that the colimit of f in A is equivalent to f̂(1) (3.2).

Furthermore, f̂(PShF (J)) ⊆ A′ since A′ is stable under F-colimits. The claim follows since J ∈ F
so 1 ∈ PShF (J). �

In a certain sense the above result is the best possible.

6.2. Corollary. Suppose F ,G ⊆ Cat∞ are classes of small ∞-categories, with the property that for
any full subcategory A′ ⊆ A of a cocomplete ∞-category A, whenever A′ is stable under F-colimits
then it is also stable under G-colimits. Then G ⊆ F .

Proof. Suppose J ∈ G and consider A′ := PShF(J) and A := PSh(J). By hypothesis A′ is stable
under G-colimits in A, and thus in particular 1 ≈ colimJ ρ ∈ PShF (J), so J ∈ F as desired. �

We can expand on the statement of (6.1), using Lurie’s embedding theorem.

6.3. Corollary. Let F ⊆ Cat∞ be a class of small ∞-categories, and let A′ ⊆ A be a full subcategory
where A has all F-colimits. If A′ is stable under F-colimits, then it is also stable under F-colimits.

Proof. Choose an F-colimit preserving embedding A� B to a cocomplete ∞-category (3.4) and
apply (6.1) to A′� B. �

6.4. Corollary. Let F ⊆ Cat∞ be a class of small ∞-categories. Then any ∞-category A which
has F-colimits also has F-colimits.

Proof. Choose an F-colimit preserving embedding A� B to a cocomplete ∞-category (3.4) and
apply (6.1). �

6.5. Corollary. Let F ⊆ Cat∞ be a class of small ∞-categories, and let f : A′ → A be a functor
between categories which have all F-colimits. If f preserves F-colimits then f preserves F colimits.

Proof. This is immediate from (6.3) and (11.2) (proved later), which says that f preserves G-colimits
if and only if the full subcategory Path(f) ⊆ LPath(f) is stable under G-colimits. �

The same ideas give another characterization of filtering closure.

6.6. Lemma. Let F ⊆ Cat∞ be a class of small ∞-categories, and let J ∈ Cat∞. Then J ∈ F if
and only if PShF (C) ⊆ PSh(C) is stable under J-colimits for all C ∈ Cat∞.

Proof. We have already shown that J ∈ F implies stability (5.1). For the converse, take C = J and
recall that 1 ≈ colimJ ρJ . �
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6.7. Corollary. Given F ,G ∈ Cat∞, we have that F = G if and only if PShF(C) = PShG(C) for
all C ∈ Cat∞.

Finally, we note some “closure properties” of filtering closure.

6.8. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories.

(1) If u : J → K is a cofinal functor between small ∞-categories, then J ∈ F implies K ∈ F .
(2) If J,K ∈ F then J ×K ∈ F .

Proof. For (1), note that if u is cofinal then u∗ : Fun(KB, A) → Fun(JB, A) (restriction along u)
preserves all colimit cones [Lur09, 4.1.1.8]. In particular if PShF(C) ⊆ PSh(C) is stable under
J-colimits, then it is also stable under K-colimits, so the claim follows from (6.6).

For (2), note that J ×K-colimits can be computed as the composite

Fun(J ×K,PSh(C)) = Fun(J,Fun(K,PSh(C)))
colimJ−−−−→ Fun(K,PSh(C))

colimK−−−−→ PSh(C).

Since colimits in functor categories are computed objectwise, if J,K ∈ F then PShF (C) is stable
under J ×K-colimits, whence the claim follows from (6.6). �

6.9. Remark. It is not the case that filtering closures are “generated by cofinality”. Simple
counterexamples include F = ∅ (10.1) and F = {∆0 q∆0} (10.4).

7. Filtering classes and ∞-groupoids

Given an ∞-category C, we write η : C → |C| for a tautological map to its groupoid completion.
Given a class F ⊆ Cat∞, we write SF := PSh(1)F.

7.1. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories. Then

F ∩ S =
∣∣F∣∣ = SF ,

i.e., the class of ∞-groupoids in F is the class of groupoid completions of objects of F , which are
the objects of the full subcategory of ∞-groupoids generated under F-colimits by the terminal object.

Proof. Clearly F ∩ S ⊆
∣∣F∣∣. The groupoid completion map η : J → |J | is cofinal (7.2), so J ∈ F

implies |J | ∈ F (6.8)(1), whence
∣∣F∣∣ ⊆ F ∩ S. We know that X ∈ PSh(1)F if and only if

X ≈ X/1 ∈ F (4.2), so SF = F ∩ S �

7.2. Lemma. The tautological map η : C → |C| from an ∞-category to its group completion is
cofinal.

Proof. It suffices to prove this for a particular model of η. For instance, there exists a factorization

C
j−→ C ′

p−→ ∆0 into a right anodyne map j followed by a right fibration p. Since the target of p
is the terminal object, it is actually a Kan fibration, so C ′ is an ∞-groupoid, while j is a weak
equivalence of simplicial sets. Thus j is a groupoid completion of C, and it is a cofinal map since all
right anodyne maps are cofinal [Lur09, 4.1.1.3]. �

8. Constructing filtering classes

8.1. Proposition. Let {A′i ⊆ Ai} be a collection of pairs of ∞-categories, where each A′i is a full
subcategory of a cocomplete ∞-category Ai, and define

F := {C ∈ Cat∞ | A′i is stable under C-colimits in Ai for all i }.
Then F is a filtering class.
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Proof. We need to show that 1 ∈ PShF(C) implies C ∈ F , so suppose 1 ∈ PShF(C). Given any

functor f : C → A′i ⊆ Ai for some i, consider the F -colimit preserving extension f̂ : PShF (C)→ Ai
of f . By hypothesis the image of f̂ is contained in A′i, and since 1 ∈ PShF (C) we have f̂(1) ∈ A′i.
Since this object is isomorphic to the colimit of f in Ai, we have shown any such colimit is in A′i.
Thus every A′i is stable under C-colimits, so C ∈ F . �

In the situation of the previous proposition, we will say that the filtering class F is cut out
by the collection of embeddings {A′i ⊆ Ai}. It is easy to see that every filtering class F arises in

this way: it is cut out by {PShF (C) ⊆ PSh(C)}C∈Cat∞ , since if PShF (J) ⊆ PSh(J) is stable under
J-colimits then 1 ∈ PShF (J).

8.2. Corollary. The intersection of any collection of filtering classes is a filtering class.

9. A recognition principle for free colimit completion

Let F ⊆ Cat∞ be a class of small ∞-categories, and A an ∞-category which has F -colimits. Say
that an object a of A is F-compact if

MapA(a,−) : A→ S

preserves all F-colimits. I write AF−cpt ⊆ A for the full subcategory of F-compact objects.
The notion of F-compactness really only depends on the filtering closure of F .

9.1. Proposition. Let A be an ∞-category which has F-colimits. Then an object of A is F-compact
if and only if it is F-compact.

Proof. Apply (6.4) and (6.5) to A and to MapA(a,−). �

Thus, if a is F-compact, then MapA(a,−) preserves F-colimits.

9.2. Proposition. Let F ⊆ Cat∞ be a class of small ∞-categories, and suppose C ∈ Cat∞. Let

f̂ : PShF (C)→ A be an F-colimit preserving functor to an ∞-category which has F-colimits, and

let f = f̂ρC : C → A.

(1) If f is fully-faithful and f(C) ⊆ AF−cpt, then f̂ is fully faithful.

(2) The functor f̂ is an equivalence if and only if
(i) f is fully faithful.
(ii) f(C) ⊆ AF−cpt.

(iii) The objects of f(C) generate A under F-colimits.

Proof. Without loss of generality we can replace F with F , using (6.4), (5.1), (6.5), and (9.1).
Furthermore, we know that PShF(C) = IndF(C) = {X ∈ PSh(C) | C/X ∈ F } (5.2), and that
every X is tautologically a C/X-colimit of representable presheaves.

Then this is proved exactly as in [Lur09, 5.3.5.11], which deals with the special case where F is
the class of κ-filtered ∞-categories for some regular cardinal κ. �

9.3. Remark. Note that the original example C
ρ−→ PShF (C) ⊆ PSh(C) of a free F -colimit completion

is exactly of this type, since all representable presheaves are “completely compact” [Lur09, 5.1.6.2].
In the case of F = Cat∞ this recovers [Lur09, 5.1.6.11].

10. Examples of filtering classes and filtering closures

10.1. The minimal filtering class. Since PSh∅(C) ≈ C, we have that

∅ = {C ∈ Cat∞ | C has a terminal object }.
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10.2. The maximal filtering class. Clearly Cat∞ is a filtering class, and PShCat∞(C) = PSh(C).
The Cat∞-compact objects of a cocomplete ∞-category are precisely what are called completely
compact in [Lur09, 5.1.6.2].

10.3. Coproducts. Let Set ⊆ Cat∞ be the collection of all small and discrete ∞-groupoids, so
that PShSet(C) is the free completion of C with respect to small coproducts. It is straightforward
to show that PShSet(C) consists exactly of presheaves which are equivalent to small coproducts of
representables, as this subcategory is itself clearly stable under coproducts. Thus 1 ∈ PShSet(C)
implies 1 ≈

∐
i ρ(c), and using this you can show that

Set = {
∐
i

Ci | each Ci ∈ Cat∞ has a terminal object }.

Similar considerations identify Set<κ, the filtering closure of κ-small sets, where κ is any regular
cardinal.

10.4. Binary coproducts. Let F = {∆0 q∆0}, so that PShF (C) is the free completion of C with
respect to pairwise coproducts. Then

F = {
∐
i∈I

C/ci | I is finite and non-empty, and each Ci ∈ Cat∞ has a terminal object }.

10.5. Generalized filtered categories. Let U ⊆ Cat∞ be a class of small ∞-categories. Say
that J ∈ Cat∞ is U-filtering if colimJ : Fun(J, S)→ S preserves all U-limits, where S denotes the
∞-category of ∞-groupoids. Write FiltU ⊆ Cat∞ for the class of all U -filtering ∞-categories. Then
FiltU is a filtering class, since it is cut out (8.1) by the collection of inclusions

Funlimit cones(UC, S) ⊆ Fun(UC, S),

where U ranges over all categories in U . Such classes are studied in [Rez21]. What follows are a few
special cases of this.

10.6. Idempotent completion. Let Idem be the walking idempotent. Then PSh{Idem}(C) is an
idempotent completion of C [Lur09, 5.3.6.9]. Thus

{Idem} = {C ∈ Cat∞ | the idempotent completion of C has a terminal object }.
It can be shown that {Idem} = FiltCat∞ , the class of J ∈ Cat∞ such that J-colimits of∞-groupoids
preserve all small limits.

10.7. κ-filtered ∞-categories. Given a regular cardinal κ, let Smκ denote the class of κ-small
∞-categories, i.e., ones which are equivalent to a κ-small simplicial set. Consider the filtering class
FiltSmκ , which consists of all J ∈ Cat∞ such that J-colimits of ∞-groupoids preserve finite limits.

Then FiltSmκ is precisely the collection of all small κ-filtered ∞-categories [Lur09, 5.3.1.7],
i.e., those J such that K → J extends over K ⊆ KB for every κ-small simplicial set K. (See
[Lur09, 5.3.3.3] for a proof.)

In particular, (4.2) says that PShFiltSmκ (C) = Indκ(C), where the latter is as in [Lur09, 5.3.5].
Objects are FiltSmκ compact if and only if they are κ-compact in the usual sense [Lur09, 5.3.4]. Thus,
our recognition principle (9.2) for free κ-filtered-colimit completion recovers Lurie’s [Lur09, 5.3.5.11].
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10.8. Sifted ∞-categories. Let Set<ω ⊆ Cat∞ denote the class of finite discrete ∞-groupoids.
Consider the filtering class FiltSet<ω , which consists of all J ∈ Cat∞ such that J-colimits of
∞-groupoids preserve finite products.

Then FiltSet<ω is precisely the collection of all small sifted ∞-categories [Lur09, 5.5.8.1], i.e., those
J such that (i) J is non-empty, and (ii) the diagonal δ : J → J × J is cofinal. (This equivalence is
well-known. The main part of the proof is [Lur09, 5.5.8.11-12].)

Sifted colimit completion of C is studied in [Lur09, 5.5.8], in the special case when C itself is
assumed to have finite coproducts.

10.9. Distilled ∞-categories. Consider the filtering class Filt{Λ2
2}, which consists of all J ∈ Cat∞

such that J-colimits of ∞-groupoids preserve pullbacks.
Then Filt{Λ2

2} is exactly the class of small distilled ∞-categories, where we say that J is distilled

if for every functor f : Λ2
0 → J , the slice Jf/ has contractible weak homotopy type. This identification

is proved in [Rez21]. Results of that paper show that the class of small distilled ∞-categories is the
filtering closure of FiltSmω ∪ S.

10.10. Weakly contractible ∞-categories. The filtering class Filt{∅} consists of J such that
J-colimits of∞-groupoids preserve the terminal object, i.e., such that colimJ ∗ is contractible. These
are precisely the weakly contractible ∞-categories.

10.11. Other examples? The problem of determining F when F is not already known to be a
filtering class is unexplored. Here are some interesting possibilities to consider.

• F = S, the class of ∞-groupoids. I offer a conjecture: S should consist of C such that the
map u : C → |C| to its groupoid completion is a left adjoint (or what is the same thing:
such that there exists a cofinal functor G→ C from an ∞-groupoid).
• F = Smω, the class of ω-small ∞-categories, so that C → PShSmω(C) is a free finite-colimit

completion of C. I have no sense here of what Smω should look like.

11. Functors preserving colimits

In this section I prove a criterion for preservation of colimits by functors which is surely well-known,
but for which I have no convenient reference. This proof was suggested to me by Maxime Ramzi.

Given a functor f : A→ B of ∞-categories, the lax path category of f is

LPath(f) := (B ×A)×B×B Fun(∆1, B),

so that objects of LPath(f) correspond to triples (b, a, γ : b→ f(a)) with a an object of A, b an object
of B, and γ a morphism of B. We write Path(f) ⊆ LPath(f) for the path category, i.e., the full
subcategory spanned by (b, a, γ) such that γ is an isomorphism in B. We write πA : LPath(f)→ A
and πB : LPath(f)→ B for the evident projection functors.

11.1. Lemma. Let K be a simplicial set, and let g : K → LPath(f) be a map. If πAg and πBg admit
colimits in A and B respectively, then g has a colimit, and both πA and πB preserve such colimits.

11.2. Corollary. Let J be an ∞-category, and suppose f : A→ B is a functor between ∞-categories
which have J-colimits. The following are equivalent.

(1) The functor f preserves all J-colimits.
(2) The full subcategory Path(f) ⊆ LPath(f) is stable under J-colimits.

Proof of Corollary from the Lemma. (1) =⇒ (2). Suppose g : JB → LPath(f) is a colimit diagram
such that g(J) ⊆ Path(f). Using (11.1) we see that g corresponds to a triple (β, α, γ) where
α : JB → A and β : JB → B are colimit diagrams, and γ : β → fα is a natural transformation of
functors JB → B such that γ|J is a natural isomorphism. Since by hypothesis f preserves J-colimits,
fα : JB → B is also colimit diagram, so γ must be an isomorphism, i.e., g(JB) ⊆ Path(f).
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(2) =⇒ (1). Suppose α : JB → A is a colimit diagram. Since B has J-colimits, we can construct a
map g : JB → LPath(f) corresponding to the triple (β, α, γ), where β : JB → B is a colimit diagram,
and γ : β → fα is such that γ|J is an isomorphism of functors J → B. By (11.1) the map g is a
colimit diagram such that g(J) ⊆ Path(f), and thus by hypothesis g(JB) ⊆ Path(f), whence γ is
an isomorphism of functors, so fα is a colimit as desired. �

Sketch proof of the Lemma. We can use the same idea as the proof of [NS18, II.1.5(iv)]. If (b, a, γ)
and (b′, a′, γ′) are objects of LPath(f), then the space of maps of the first to the second is isomorphic
to the pullback of the diagram

MapFun(∆1,B)(γ, γ
′)→ MapB(b, b′)×MapB(fa, fa′)

id×f←−−− MapB(b, b′)×MapA(a, a′).

of simplicial sets. This is seen to be equivalent to the pullback of a diagram the form

MapB(b, b′)
γ′∗−→ MapB(b, fa′)

γ∗◦f←−−− MapA(a, a′).

Now use the mapping space criterion for colimits [Lur09, 4.2.4.3] to show that a map h : KB →
LPath(f) is a colimit if both πAh and πBh are colimits.

It remains to show that any g : K → LPath(f) admits a colimit h of the above form if πAg and
πBg admit colimits. This is straightforward: choose colimits hA : KB → A of πAg and hB : KB → B
of πBg. The universal property of colimits provides a natural transformation η : hB → fhA of
functors KB → B extending the given transformation γ : πBg → fπAg, and thus we can take h to
be the map corresponding to the triple (hB, hA, η). �
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Pure Appl. Algebra 175 (2002), no. 1-3, 7–30. Special volume celebrating the 70th birthday of Professor
Max Kelly.

[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press,
Princeton, NJ, 2009.

[NS18] Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409.
[Rez21] Charles Rezk, Generalizing accessible ∞-categories (2021), available at http://www.math.uiuc.edu/~rezk/

accessible-cat-thoughts.pdf.

Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL
Email address: rezk@illinois.edu


