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Abstract. We prove the following fact which is difficult to find in the literature: if p : X → S
is a Cartesian fibration of arbitrary simplicial sets, and f is a degenerate edge of X, then f
is a p-Cartesian edge.

1. Introduction

The purpose of this note is to establish the following fact (5.4): degenerate edges of Cartesian
fibrations are Cartesian edges. (This of course implies the “opposite” fact: degenerate edges
of coCartesian fibrations are coCartesian edges.)

That degenerate edges of Cartesian fibrations are Cartesian edges is seemingly required
for much of the material in Chapters 2–4 of [Lur09] (for instance [3.1.1.8]), but apparently
not explicitly proved there. Furthermore, the situation is somewhat delicate: as pointed out
by Alexander Campbell (see (2.1) below), degenerate edges of inner fibrations need not be
Cartesian or coCartesian edges, contrary to what one might have assumed.

The proof given here originally arose from a discussion in the Homotopy Theory chatroom
on mathoverflow.net, on or around September 14–15, 2016, involving myself, Denis Nardin,
and Dylan Wilson. I was later able to simplify that proof somewhat: it is not difficult,
and mainly amounts to a combination of [2.1.4.5], [2.4.1.12], and [2.4.2.8]. The simplified
proof is given in §5 and actually shows a little more: edges in Cartesian fibrations which
are isomorphisms in a fiber quasicategory are always Cartesian edges (5.3). A version of the
original proof is given in §6.

I have also given an exposition of some of the needed results from [Lur09], especially when
doing so would seem to clarify things. For instance, the proofs rely on the implication (1)
=⇒ (3) of [2.4.2.8] in [Lur09], but the proof of that given there is hard for me to follow. So I
have given a proof here (5.2). Furthermore, the original proof of (5.4) relied on implication
(3) =⇒ (1) of [2.4.2.7], whose proof there is quite terse. I have give a more detailed proof
of that implication (6.1) here, modulo a piece of that argument which is broken out as a
separate proposition (7.1), which is of independent interest.

I had completely forgotten about the 2016 discussion and proof until recently, when
Alexander Campbell raised the question again in the same chatroom. This led me to search
for earlier chatroom discussions related to this, by which I rediscovered the 2016 discussion.
I’m writing this up and putting it online, so that the next time I forget about the existence
of this proof a Google search will be likely to find it for me.

Thanks to the participants of the aforementioned chatroom discussion, as well as Alexander
Campbell and David Breugmann, who commented on versions of this document.

All purely numerical citations (e.g., “[2.4.1.1]”) are to numbered statements in [Lur09].

Date: December 14, 2019.
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2. Cartesian edges

Let p : X → S be a map of simplicial sets. An edge f : x→ y of X is p-Cartesian [2.4.1.1]
if the induced map

X/f → X/y ×S/p(y)
S/p(f)

is a trivial fibration.
I’m going to refer to these kinds of edges generically as “Cartesian edges” when I don’t

want to refer to a particular map p. But remember that the definition is meaningful only in
the context of a given map p.

The practice of [Lur09], whenever speaking of p-Cartesian edges, is to require in addition
that p be an inner fibration. I won’t insist on this, as the definition makes sense for general
maps p, and some elementary facts about p-Cartesian edges do not rely on p being an inner
fibration. However, in practice there is not much to say about p-Cartesian edges unless p has
some additional property, which typically includes being an inner fibration.

Here is an equivalent formulation: an edge f is p-Cartesian if and only if for every n ≥ 2
and every commutative square

Λn
n

u
//

��

��

X

p

��

∆n
v
//

s

>>

S

such that u(〈n− 1, n〉) = f , a lift s exists [2.4.1.4].

2.1. Remark. It is not the case that a degenerate edge of an inner fibration p : X → S must
be p-Cartesian. We give an example, which is the op-dual of the example of [Cam19].

Let S = ∆2/(〈12〉 ∼ ∗) be the quotient of the 2-simplex obtained by collapsing the edge
〈12〉 to a point. Let p : X � S be the inclusion of the subcomplex generated by the image of
the edge 〈02〉, so that X ≈ ∆1.

The map p is seen to be an inner fibration, as follows. There is a pullback square of the
form

Λ2
2

u
//

��

q
��

X
��

p

��

∆2
v
// S

where v is the quotient map. The horn inclusion q is a map between (nerves of) 1-categories
and thus an inner fibration. It is then straightforward to show that p is an inner fibration,
using that v is surjective.

The edge f = u(〈12〉) is degenerate in X, but no lift exists in the above square since p is
not surjective, and thus f is not p-Cartesian.

As we will see, for an inner fibration p : X → S we have that: degenerate edges of X are
p-Cartesian if S is a quasicategory (§3), and that degenerate edges of X are always locally
p-Cartesian (4.3) (for any S). (For instance, the edge f of (2.1) is locally p-Cartesian though
not p-Cartesian.)
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Given a pullback square

X ′
u
//

p′

��

X

p

��

S ′ v
// S

I’ll say that a simplex σ′ of X ′ is a pullback of a simplex σ of X if u(σ′) = σ, and that it is
“the pullback over τ ′” if p′(σ) = τ ′, where τ ′ is a simplex in S ′ such that v(τ ′) = p(σ).

It is immediate from the definitions that for such a pullback square, if f is a p-Cartesian
edge, then any pullback f ′ of f is a p′-Cartesian edge [2.4.1.3 (2)]. That is, “Cartesian edges
are preserved by base change”.

The definition of Cartesian edge can thus be reformulated as follows.

2.2. Proposition. If p : X → S is a map and f is an edge in X, then f is a p-Cartesian
edge if and only if for every basechange p′ : X ′ → ∆n of p along a map v : ∆n → S with n ≥ 2
and v(〈n− 1, n〉) = p(f), the pullback edge f ′ of f in X ′ over 〈n− 1, n〉 is p′-Cartesian.

When p is an inner fibration this can be sharpened significantly (7.2), as we will see.

2.3. Warning. It is not the case that a pullback f of a degenerate edge f ′ is also degenerate.
(It is surprisingly easy to fall into the trap of assuming this.)

It is however true that the pullback of a degenerate edge over a degenerate edge is
degenerate.

3. Cartesian edges in inner fibrations between quasicategories

We consider p : X → S an inner fibration to a quasicategory S. It follows that X is also a
quasicategory. In this setting, isomorphisms are always Cartesian edges, by the “Joyal lifting
theorem”.

3.1. Proposition ([2.1.4.5], [Joy02]). If p : X → S is an inner fibration between quasicate-
gories, and f any edge in X, the following are equivalent: (i) f is an isomorphism in X. (ii)
f is p-Cartesian and p(f) is an isomorphism in S.

Thus, if p : X → S is an inner fibration between quasicategories, then every isomorphism
of X is p-Cartesian, and so in particular every degenerate edge (i.e., identity map) of X is
p-Cartesian [2.1.4.6]. Furthermore, every p-Cartesian edge of X over a degenerate edge of S
is an isomorphism in X.

Furthermore, in this context, “Cartesian edges are closed under composition and left
cancellation”.

3.2. Proposition ([2.4.1.7]). Let p : X → S be an inner fibration between quasicategories,
and consider a 2-simplex in X with edges

y
f

��

x

g
??

h
// z

If f is p-Cartesian, then g is p-Cartesian iff h is p-Cartesian
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4. Locally Cartesian edges

Let p : X → S be a map of simplicial sets. An edge f of X is locally p-Cartesian
[2.4.1.11] if the edge f ′ is p′-Cartesian, where p′ : X ′ → ∆1 is the base change of p along the
map ∆1 → S representing the edge p(f) in S, and f ′ is the pullback edge of f over 〈01〉 in
X ′.

As in the Cartesian case, I’ll speak generically of “locally Cartesian edges” when I don’t
want to specify a map p.

Here is an equivalent formulation: an edge f is locally p-Cartesian if and only if for every
n ≥ 2 and every commutative square

Λn
n

u
//

��

��

X

p

��

∆n

〈0···01〉
//

s

66

∆1
v
// S

such that u(〈n− 1, n〉) = f , a lift s exists. This has the following immediate consequence.

4.1. Proposition. Let p : X → ∆k be map of simplicial sets with k ≥ 1, and let f be an edge
of X such that p(f) = 〈0m〉 for some m ∈ [k]. Then f is a p-Cartesian edge if and only if it
is a locally p-Cartesian edge.

Proof. The hypothesis implies that every commutative square we need to examine to prove f
is p-Cartesian has as its bottom side the composite of maps

∆n 〈0···01〉−−−−→ ∆1 〈0m〉−−→ ∆k,

and f being locally p-Cartesian supplies us with lifts for such squares. �

Clearly, any p-Cartesian edge is locally p-Cartesian.
Here is another equivalent formulation: an edge f is locally p-Cartesian if there exists a

basechange p′ : X ′ → S ′ of p and a p′-Cartesian edge f ′ of X ′ which is a pullback of f . That
this is the case just amounts to the fact that Cartesian edges are preserved by base change,
and that any edge in X ′ such as f ′ is in the image of base change along some map ∆1 → S ′.
In other words, “locally p-Cartesian” is in some sense a “local condition” with respect to the
codomain of p.

It is clear that locally Cartesian edges are preserved under basechange, just as Cartesian
edges are. In fact, if p′ : X ′ → S ′ is a basechange of p : X → S, and an edge f ′ of X ′ is a
pullback of an edge f of X, then f ′ is locally p′-Cartesian if and only if f is locally p-Cartesian
[2.4.1.12]. That is, “locally Cartesian edges are preserved and detected by basechange”. This
stronger detection property does not hold for Cartesian edges, since there are locally Cartesian
edges which are not Cartesian (e.g., the edge f of (2.1)).

Given an inner fibration p : X → S we say that an edge f of X is a fiber isomorphism
if (i) p(f) is a degenerate edge on some vertex v ∈ S, and (ii) f is an isomorphism in the
subcomplex C = p−1(v), which is a quasicategory since p is an inner fibration.

4.2. Proposition. Let p : X → S be an inner fibration and f an edge of X which is a fiber
isomorphism. Then f is locally p-Cartesian.
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Proof. We have a pullback square of the form

C

p′
��

// // X

p

��

∆0 //
v
// S

with C a quasicategory since p and thus p′ are inner fibrations. Since locally Cartesian
edges are detected by basechange, to show f is locally p-Cartesian it suffices to show that its
(unique) pullback f ′ in C is p′-Cartesian (and thus locally p′-Cartesian). This is in fact the
case, since p′ is an inner fibration between quasicategories and f ′ is an isomorphism in C
(3.1). �

4.3. Corollary. Let p : X → S be an inner fibration and f an degenerate edge in X. Then f
is locally p-Cartesian.

Proof. Immediate from (4.2), since any such degenerate edge is an identity map in its fiber
quasicategory, and so a fiber isomorphism. �

The following asserts that locally Cartesian edges in an inner fibration which lie over the
same edge of the base are in some sense equivalent.

4.4. Proposition. Let p : X → S be an inner fibration, and let h : x → z and f : y → z be
edges in X with the same target vertex, and such that p(h) = p(f). If f and h are locally
p-Cartesian, then there exists a 2-simplex in X of the form

y
f

��

x

g
??

h
// z

such that p(g) is the degenerate edge on v = p(x) = p(y) and g is an isomorphism in the fiber
quasicategory C = p−1(v).

Proof. Let p′ : X ′ → ∆1 be the basechange of p along ∆1 → S representing the edge
p(f) = p(h), and let f ′ and h′ be the evident pullback edges in X ′ over 〈01〉, which therefore are
p′-Cartesian edges. The induced map X ′ → X sends p′−1(〈0〉) isomorphically to C = p−1(v),
so it suffices to construct a 2-simplex σ in X ′ with σ〈12〉 = f ′ and σ〈02〉 = h′, so that
σ〈01〉 = g′ is an isomorphism in the fiber quasicategory p′−1(〈0〉).

In other words, to prove the claim we can assume without loss of generality, in addition to
the hypotheses of the proposition, that S = ∆1, with p(f) = p(h) = 〈01〉 and v = 〈0〉, and
that f and h are p-Cartesian edges.

In this situation, using that f is p-Cartesian we construct a 2-simplex σ in X lifting the 2-
simplex 〈001〉 in ∆1 and such that σ〈12〉 = f and σ〈02〉 = h. Since p is now an inner fibration
between quasicategories and f and h are p-Cartesian, the edge g = σ〈01〉 is also p-Cartesian
since in this case Cartesian edges are closed under left cancellation (3.2). Furthermore, since
g is p-Cartesian and p(g) is degenerate, we must have that g is an isomorphism in X (3.1).

Finally, note that the only simplices σ in S = ∆1 such that every vertex of σ is 〈0〉 are the
degenerate simplices on 〈0〉. It follows that the data that witnesses that g is an isomorphism
in X (i.e., the inverse edge, and homotopies of composites of g and its inverse with identity
maps) all live in the fiber quasicategory C = p−1(〈0〉). Thus g is an isomorphism in C as
desired. �
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5. Cartesian fibrations

A map p : X → S is a Cartesian fibration [2.4.2.1] if

(1) p is an inner fibration, and
(2) for every edge f : x → y in S and vertex ỹ in X such that p(ỹ) = y, there exists a

p-Cartesian edge f̃ : x̃→ ỹ in X such that p(f̃) = f .

It is clear that any basechange of a Cartesian fibration is again a Cartesian fibration [2.4.2.3
(2)].

If we have a Cartesian fibration between quasicategories, then there is no distinction between
Cartesian and locally Cartesian edges.

5.1. Proposition. Let p : X → S be a Cartesian fibration between quasicategories. Then any
locally p-Cartesian edge in X is a p-Cartesian edge.

Proof. Let h : x→ z be a locally p-Cartesian edge. Since p is a Cartesian fibration, we can
choose a p-Cartesian edge f : y → z with p(h) = p(f), and note that f is thus also locally
p-Cartesian. By (4.4) there exists a 2-simplex in X of the form

y
f

��

x

g
??

h
// z

such that p(g) is the degenerate edge on v = p(x) = p(y) and g is an isomorphism in the
fiber quasicategory C = p−1(v), and hence an isomorphism in the quasicategory X, since any
morphism between quasicategories (such as C → X) sends isomorphisms to isomorphisms.

Because p is an inner fibration between quasicategories, we have that since g is an
isomorphism it is also p-Cartesian (3.1). Furthermore, in this context Cartesian edges are
closed under composition (3.2), so since f is p-Cartesian we have that h is p-Cartesian, as
desired. �

The following removes the quasicategory requirement from (5.1). It is proved as [2.4.2.8,
(1) =⇒ (3)]. I do not understand the proof given there, so I give one here.

5.2. Proposition. If p : X → S is a Cartesian fibration, then every locally p-Cartesian edge
of X is p-Cartesian.

Proof. Let f : y → z be a locally p-Cartesian edge of X. To show that f is a p-Cartesian
edge, it suffices by (2.2) to show that for any basechange of p of the form p′ : X ′ → ∆n with
an edge f ′ of X ′ which is the pullback of f over 〈n− 1, n〉, that the edge f ′ is p′-Cartesian.
Such a pullback edge f ′ is certainly locally p′-Cartesian as such are preserved under base
change, and since p′ is a Cartesian fibration between quasicategories, it follows that f ′ is a
p′-Cartesian edge by (5.1). �

Thus we have the following consequence.

5.3. Theorem. If p : X → S is a Cartesian fibration, any edge f of X which is a fiber
isomorphism is a p-Cartesian edge.

Proof. Because p is a Cartesian fibration it is an inner fibration. Every fiber isomorphism of
an inner fibration is locally p-Cartesian (4.3). Every locally p-Cartesian edge of a Cartesian
fibration is p-Cartesian (5.2). �
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5.4. Corollary. If p : X → S is a Cartesian fibration, any degenerate edge of X is a Cartesian
edge.

6. Another proof

We here give another proof of (5.3).
A map p : X → S is a locally Cartesian fibration [2.4.2.6] if it is an inner fibration,

and if the base change p′ of p along any map ∆1 → S is a Cartesian fibration.
That is, locally Cartesian fibrations are p : X → Y such that

(1) p is an inner fibration, and
(2’) for every edge f : x → y in S and vertex ỹ in X such that p(ỹ) = y, there exists a

locally p-Cartesian edge f̃ : x̃→ ỹ in X such that p(f̃) = f .

In particular, any Cartesian fibration is a locally Cartesian fibration, since locally Cartesian
edges are Cartesian edges.

We will need the following “composition criterion” for an edge in a locally Cartesian
fibration to be a Cartesian edge, which is proved as [2.4.2.7, (3) =⇒ (1)]. I will give a proof
of it below (§8).

6.1. Proposition. Let p : X → S be a locally Cartesian fibration, and consider an edge
f : y → z in X. Suppose f has the following property: for every 2-simplex σ in X of the form

y
f

��

x

g
??

h
// z

such that g is locally p-Cartesian, the edge h is also locally p-Cartesian. Then f is p-Cartesian.

Second proof of (5.3). Let f : y → z be an edge of X which is a fiber isomorphism of p. Since
p is a Cartesian fibraton and thus a locally Cartesian fibration, to show that f is p-Cartesian
we apply the criterion of of (6.1): for every 2-simplex σ in X of the form

y
f

��

x

g
??

h
// z

such that g is locally p-Cartesian, we show that h is also locally p-Cartesian.
Because locally Cartesian edges are preserved and detected by base change, it suffices to

consider p′ : X ′ → ∆2 obtained as the basechange of p along τ : ∆2 → S representing p(σ),
together with the 2-simplex σ′ of X ′ which is the pullback of σ over 〈012〉. Write f ′, g′, h′ for
the evident pullback edges of σ′.

We have that g′ is locally p′-Cartesian as it is a pullback of a locally Cartesian edge. I
claim that f ′ is also locally p′-Cartesian. To see this, observe that there is a commutative
square

∆1 //
〈12〉
//

〈00〉
��

∆2

τ

��

p′′′ +3

��

p′

��

f ′′′ � //

_

��

f ′
_

��

∆0 //
v
// S p′′ +3 p f ′′ � // f
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where v represents the vertex p(y) = p(z). Condsider the basechanges p′, p′′, and p′′′ of p
along the maps in the square, and let f ′, f ′′, and f ′′′ be the pullback edges of f over 〈12〉
in ∆2, 〈00〉 in ∆0, and 〈01〉 in ∆1 respectively. Since f is a fiber isomorphism, the edge f ′

is an isomorphism in the domain of p′′, and so is a p′′-Cartesian edge since p′′ is an inner
fibration between quasicategories (3.1). Therefore its pullback f ′′′ is a p′′′-Cartesian edge and
so locally p′′′-Cartesian, from which it follows that f ′ is locally p′-Cartesian, since locally
Cartesian edges are detected under base change.

Since p′ is a base change of p, it is a Cartesian fibration, and being a Cartesian fibration
between quasicategories it follows that the locally p′-Cartesian edge f ′ is in fact a p′-Cartesian
edge (5.1). Furthermore, the edge g′ is also p′-Cartesian by (4.1) since it is locally p′-Cartesian
and p′(g′) = 〈01〉.

Again since p′ is an inner fibration between quasicategories, we conclude that the “composite”
h′ of g′ and f ′ is p′-Cartesian (3.2). Since locally Cartesian edges are detected by basechange
we conclude that h is locally p-Cartesian. Thus we have verified the criterion of (6.1) to show
that f is p-Cartesian. �

7. Criteria for Cartesian edges

We give explicit criteria for Cartesian edges in inner fibrations. The idea of the proof of
the following is taken from the proof of [2.4.2.7] (specifically, from part of the proof that (3)
=⇒ (1)).

7.1. Proposition. Let p : X → S be an inner fibration, and let f : y → z be an edge of X.
The following are equivalent.

(1) f is a p-Cartesian edge.
(2) The evident restriction map π : X/f → X/z ×S/pz S/pf has contractible fibers.

(3) For every k ≥ 0 and every commutative diagram of the form

L //
��

��

Λ2
2
��

t

$$

Λk+2
k+2

u
//

��

�� ��

X

p

��

∆k+2

〈0···012〉
//

s

44

∆2
v

// S

such that u(〈k + 1, k + 2〉) = f , where L = ∆{0,...,k,k+2} ∪∆{k+1,k+2} is the preimage
of Λ2

2 ⊂ ∆2 under 〈0 · · · 012〉, there exists a map s : ∆k+2 → X such that s|Λk+2
k+2 = u

and ps = v〈0 · · · 012〉.
(4) For every basechange p′ : X ′ → ∆2 of p along a map v : ∆2 → S, and every edge

f ′ : y′ → z′ of X ′ which is a pullback of f ′ over 〈12〉, the evident restriction map

π′ : X ′/f ′ → X ′/z′ ×∆2
/〈2〉

∆2
/〈12〉

has contractible fiber over any vertex of the codomain of π′ which projects to 〈0〉 ∈
∆1 = ∆2

/〈12〉.

Proof. Recall that by definition f is a p-Cartesian edge if and only if π is a trivial fibration.
Because p is an inner fibration, π is a right fibration [2.1.2.1], and a right fibration is a trivial
fibration if and only if it has contractible fibers [2.1.3.4]. This gives (1) ⇐⇒ (2).
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A vertex of X/z ×S/pz S/pf has the form (h′, v′), where h′ ∈ (X/z)0 and v′ ∈ (S/pf)0

correspond to maps h : ∆1 → X and v : ∆2 → S such that there is a commutative diagram

Λ2
2

t
//

��

��

X

p

��

∆2
v
// S

where t|∆{0,2} = h and t|∆{1,2} = f . A straightforward argument involving the correspondence
between lifting problems

∂∆k f
//

��

��

X/f

π

��

∆k

b
//

88

X/z ×S/pz S/pf

⇐⇒ ∆{k+1,k+2} // //

f

''
Λk+2
k+2
��

��

// X

p

��

∆k+2

88

// S

shows that lifting problems on the left such that the image of b is a single vertex correspond
exactly to the lifting problems of the type described in (3), thus proving (2) ⇐⇒ (3).

The lifting problem of (3) is equivalent to a lifting problem for the basechange p′ : X ′ → ∆2

of p along v. A similar argument involving correspondence of lifting problems involving p′

and π′ gives (3) ⇐⇒ (4). �

A a consequence we learn that the property of an edge in an inner fibration being Cartesian
“lives” over 2-simplices, an observation which is implicit in [2.4.2] but apparently not stated
explicitly there. (It can also be deduced using [2.4.4.3].)

7.2. Corollary. If p : X → S is an inner fibration and f is an edge in X, then f is a p-
Cartesian edge if and only if for every basechange p′ : X ′ → ∆2 of p along a map v : ∆2 → S
with v(〈12〉) = p(f), the pullback edge f ′ of f in X ′ over 〈12〉 is p′-Cartesian.

In fact (7.1) gives us something a little bit sharper than this, which will be used in the
proof of (6.1) below.

8. Proof of the composition criterion for Cartesian edges in a locally
Cartesian fibration (6.1)

The proof of the “composition criterion” (6.1) in [2.4.2.7] is quite terse. I give a more
leisurely exposition here (which is just an elaboration of Lurie’s proof, part of which is here
contained in the proof of (7.1)).

Proof of (6.1). Consider a map p : X → S and an edge f : y → z in X. Assume we know the
following

(a) p is a locally Cartesian fibration, and
(b) for every 2-simplex σ in X of the form

y
f

��

x

g
??

h
// z

such that g is locally p-Cartesian, the edge h is also locally p-Cartesian.
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We want to show that f is a p-Cartesian edge.
Let’s say that an edge f in the domain of some p is “nice” if (a) and (b) hold. It is

clear that if p′ : X ′ → S ′ is a basechange of p, and if f ′ is an edge of X ′ which is a pullback
of f , then f ′ is “nice” whenever f is “nice”. This is because locally Cartesian fibrations
are preserved under basechange, and locally Cartesian edges are preserved and detected by
basechange.

To show that f is p-Cartesian we will apply the criterion of statement (4) of (7.1). In view
of the remarks of the previous paragraph, it thus suffices to show that for any locally Cartesian
fibration p : X → S with S = ∆2 and any “nice” edge f : y → z of X such that pf = 〈12〉, the
fiber of π : X/f → X/z ×∆2 ∆{0,1} over any vertex which projects to 〈0〉 ∈ ∆1 is contractible.

(Here I am implicitly using the unique isomorphisms ∆2
/〈2〉 = ∆2 and ∆2

/〈12〉 = ∆{0,1}.) Note
that in this case p is a locally Cartesian fibration between quasicategories.

We introduce the following notation. For every map q : K → X we define Yq and Tq by
pullback squares

Yq //

��

��

Tq //

��

��

{0}
��

��

X/q
// ∆2

/pq
// ∆2

where the maps in the bottom row are the evident restrictions along ∅ → K
q−→ X. It is

straightforward to check that Tq → {0} is always an isomorphism. Using this, one sees that
for every j : L→ K we have pullback squares

Yq
��

��

// Yqj
��

��

// Tq
∼
//

��

��

{0}
��

��

X/q
// X/qj ×∆2

/pqj
∆2
/pq

// ∆2
/pq

// ∆2

where the maps are the evident ones.
In particular, taking q representing the edge f and j : {1} → ∆1 we have a pullback square

Yf
��

��

π̃
// Yz
��

��

X/f π
// X/z ×∆2 ∆{0,1}

with the property that every vertex (a′, 〈0〉) in X/z ×∆2 ∆{0,1} is in the image of Yz �
X/z ×∆2 ∆{0,1}. Thus, to show that the fibers of π over such vertices are contractible, it
suffices to show that all fibers of π̃ are contractible, and thus suffices to show that π̃ is a
trivial fibration. As noted earlier π is a right fibration, and therefore so is the basechange
π̃. Thus to show π̃ is a trivial fibration, it suffices [2.4.2.4], [2.4.4.6] to show that π̃ is a
categorical equivalence.

Since p is a locally Cartesian fibration, there exists a locally p-Cartesian edge g : x→ y in
X with p(g) = 〈01〉. Because X is a quasicategory we can extend along Λ2

1 ⊂ ∆2 to produce
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τ : ∆2 → X representing a 2-simplex in X of the form

y
f

��

x

g
??

h
// z

such that p(τ) = 〈012〉. Our hypothesis that f is a “nice” edge implies that h is also a locally
p-Cartesian edge. Because p(g) = 〈01〉 and p(h) = 〈02〉, these locally p-Cartesian edges are
in fact p-Cartesian edges by (4.1).

We have the following commutative diagram of subcomplexes of ∆2:

∆2 Λ2
1

oooo ∆{1,2}oooo

Λ2
0

OO

OO

∆{0,2}oooo ∆{2}oooo

OO

OO

inducing by restriction a commutative diagram

Yτ
α1
//

α0

��

Yτ |Λ2
1

γ
// Yf

π̃

��

Yτ |Λ2
0 α2

// Yh
δ
// Yz

I’ll show that each of α0, α1, α2, γ, δ is a trivial fibration and thus a categorical equivalence,
whence π̃ is a categorical equivalence by the 2-out-of-3 property for categorical equivalences.
This will complete the proof of the claim.

The maps α0, α1, α2 are basechanges of the evident restrictions X/τ → X/τ |Λ2
0
×S

/pτ |Λ2
0

S/pτ ,

Xτ → Xτ |Λ2
1
×S

/pτ |Λ2
1

S/pτ , and Xτ |Λ2
0
→ X/h×S/ph S/pτ |Λ2

0
respectively, each of which is a trivial

fibration since p is an inner fibration and each of Λ2
0 ⊂ ∆2, Λ2

1 ⊂ ∆2, and ∆{0,2} ⊂ Λ2
0 are left

anodyne [2.1.2.5].
Since g and h are p-Cartesian edges, the map δ is a basechange of the trivial fibration

X/h → X/z ×S/pz S/ph, while γ is a basechange of X/τ |Λ2
1
→ X/f ×S/pf S/pτ |Λ2

1
, which is itself

a basechange of the trivial fibration X/g → X/y ×S/py S/pg. Thus both δ and γ are trivial
fibrations as desired.

�
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