
Notes on the Hopkins-Miller Theorem

Charles Rezk

Abstract. We give an exposition of the proof of a theorem of Hopkins and
Miller, that the spectra En admit an action of the Morava stabilizer group.

1. Introduction

These expository notes were originally written as an aid to the author while
he was giving a course on the proof of the Hopkins-Miller theorem (Theorem 2.1)
at Northwestern in Spring 1997. The aim was to describe the theorem, and give a
sketch of the proof.

The aim was achieved, though only by glossing over certain points. In par-
ticular, several places rely on the existence of closed model category structures on
various categories of spectra, and on subtle properties of this structure; I have not
tried to deal with these issues. A few other points are left as references. At some
points, the exposition is rather terse. Otherwise, the proof is as complete as I could
make it.

The matter of the final part of these notes, on the construction of A∞-ring
structures, has to some extent been superseded by recent work of Hopkins and
Goerss. They have developed more powerful obstruction machinery for construct-
ing rigid algebraic structures on spectra, and are able to prove results about the
existence of E∞-structures as well as of A∞-structures.

The material is based primarily on lectures and courses given by Mike Hopkins
which I have attended at one time or another, and on discussions with Mike Hopkins
and Haynes Miller. Also of great use were notes prepared by Lee Nave at a course
given by Mike Hopkins at the University of Washington in the Spring of 1996.

All errors are mine, most of the true bits belong to others.

1.1. Organization. After giving a statement of the main result in Section
2, we outline Lubin-Tate’s theory of universal deformations of formal groups over
fields of positive characteristic, and its relation to homotopy theory, in Sections
3–7. In Sections 8–14 we summarize what we need about the theory of spectra
and A∞-ring spectra, and set up an obstruction theory and a spectral sequence
for calculating maps between A∞-ring spectra. In Sections 15–21 we give the
calculation of the obstruction groups and the E2-term of the spectral sequence,
assuming that we have an A∞-ring spectrum structure on the spectra of interest;
the obstruction groups vanish and the spectral sequence collapses for algebraic
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reasons. Finally, in Sections 22–23 we outline an obstruction theory for constructing
an A∞-ring spectrum structure, and compute the obstruction groups by reducing
to the calculations already carried out.

2. The theorem

In this section we state the main theorem, modulo definitions of some of the
key concepts. (Formal group laws are defined in Section 3, universal deformations
of formal group laws are defined in Section 4, and A∞-ring spectra are defined in
Section 12.)

Let FG denote the category having as objects pairs (k,Γ), where k is a perfect
field of finite characteristic p, and Γ is a formal group of height n over k, and
with morphisms α : (k1,Γ1)→ (k2,Γ2) consisting of a pair (i, f), where i is a map
i : k2 → k1 of rings and f is an isomorphism f : Γ1 → i∗Γ2 of formal group laws.

Theorem 2.1 (Hopkins-Miller). There exists a functor (k,Γ) 7→ Ek,Γ from
FGop to the category of A∞-ring spectra, such that

1. Ek,Γ is a commutative ring spectrum,
2. there exists a unit in π2EΓ,
3. πoddEk,Γ = 0, from which it follows that Ek,Γ is complex orientable,
4. and such that the corresponding formal group law over π0EΓ is the universal

deformation of (k,Γ).

In particular, when (k,Γ) = (Fpn , Fn) where Fn is the unique p-typical formal
group law of height n with [p]Γ(x) = xp

n

, then Ek,Γ is called En, and

π0En = W Fpn [[u1, . . . , un−1]].

The Hopkins-Miller theorem shows that this spectrum admits an action by the
group of G automorphisms of (Fpn , Fn) “on the nose”. This automorphism group
is an extension of the Morava stabilizer group Sn by the Galois group of Fpn over
Fp .

One application of the Hopkins-Miller theorem is the construction of “higher
real K-theories”, which are produced by taking the homotopy fixed points of En
by the action of a finite subgroup of G. The fixed points of En by a maximal finite
subgroup of G are usually denoted EOn.

We will return to Theorem 2.1 in Section 7.

Part 1. Universal deformations

In the following sections, we define universal deformations and describe the
Lubin-Tate moduli space. We use this to construct a functor from an appropriate
category of formal group laws to the category of generalized homology theories
(Section 6). It is this functor which the Hopkins-Miller theorem “lifts” to the
category of A∞-ring spectra.

3. Formal group laws

We define the category of formal group laws, and discuss some basic properties.
More details on formal group laws may be found in [7], [1, part 2], and [13], among
other places.
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3.1. Definition of formal group laws. Let R be a commutative ring. A
formal group law F over R is a formal power series F (x, y) ∈ R[[x, y]] such that

(a) F (x, 0) = x = F (0, x),
(b) F (x, y) = F (y, x),
(c) F (F (x, y), z) = F (x, F (y, z)).

By (a) and (b) such a power series F (x, y) necessarily has the form

F (x, y) = x+ y +
∑
i,j≥1

aijx
iyj ,

where aij = aji ∈ R. Sometimes I’ll write x+
F
y for F (x, y).

Example 3.2. The additive formal group law is defined by x +
Ga
y = x+ y.

Example 3.3. The multiplicative formal group law is defined by 1+(x +
Gm

y) =

(1 + x)(1 + y).

Example 3.4. Elliptic formal group laws. (See, e.g., Silverman [17].)

Let B is a complete local R-algebra with maximal ideal m; that is, B '
limB/mk and

⋂
k mk = 0. A formal group law F on R defines an abelian group

structure on m. In particular, it defines an abelian group structure on the ideal of
R[[x]] generated by x. We write a+

F
b for the sum of a, b ∈ m in this group structure.

A morphism f : F → G of formal group laws over R is a formal power series
f(x) ∈ R[[x]] such that f(0) = 0 and f(x+

F
y) = f(x) +

G
f(y). The isomorphisms

are precisely those f(x) ∈ R[[x]] for which f(x) = ax + · · · with a an invertible
element of R. Such an isomorphism is called a strict isomorphism if a = 1.

Given a formal group law F over R and a power series f(x) ∈ R[[x]] with
f(0) = 0 and with f ′(0) a unit in R, we can define a new formal group law G by

G(x, y) = f
(
F
(
f−1(x), f−1(y)

))
,

which comes with an isomorphism f : F → G of formal group laws.
I’ll write fgl(R) for the groupoid consisting of all formal group laws on R and

all isomorphisms between them. A map φ : R → S of rings induces a functor
φ∗ : fgl(R)→ fgl(S) by sending

F (x, y) =
∑
i,j

aijx
iyj to φ∗F (x, y) =

∑
i,j

φ(aij)xiyj.

For any formal group law, one can write the n-series

[n]F (x) = x+
F
· · ·+

F
x,

by taking the n-fold sum of x in the group law F . The n-series is in fact an
endomorphism of the formal group law F . Since [n]F (x) = nx + · · · , it is an
automorphism if n is invertible in R.

3.5. Formal group laws over fields of characteristic p. We now consider
formal group laws over a field k of characteristic p.

Proposition 3.6. If f : F → G is a homomorphism of formal group laws over
k, and if f(x) 6= 0, then

f(x) = g(xp
n

)
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for some n ≥ 0 and some g(x) ∈ k[[x]] with g(0) = 0 and g′(0) 6= 0.

For such a homomorphism f : F → G the largest such integer n is called the
height of f (or if f(x) = 0, we say f has infinite height.) If [p]F (x) has height n
then we say that the formal group law F has height n.

Proof of Proposition 3.6. Since f(F (x, y)) = G(f(x), f(y)), by applying
∂
∂y and evaluating at y = 0 we see that

f ′(x)F2(x, 0) = G2(f(x), 0)f ′(0).

Since F2(x, 0) = 1 + (higher terms), it has a multiplicative inverse, so we see that
if f ′(0) = 0 then f ′(x) = 0, whence f(x) = g(xp) for some power series g(x). The
proof can be completed by induction if we can show that g(x) is itself a morphism
of formal group laws.

Let σ : k → k denote the homomorphism x 7→ xp. Then one can check that

F
xp−→ σ∗F

g−→ G

is a diagram of formal group laws and homomorphisms. In fact,

g(σ∗F (xp, yp)) = g(F (x, y)p) = f(F (x, y)) = G(f(x), f(y)) = G(g(xp), g(yp)),

whence
g(σ∗F (x, y)) = G(g(x), g(y)),

as desired.

Example 3.7. The additive formal group law has infinite height, since the p-
series is [p]Ga(x) = px ≡ 0. The multiplicative formal group law has height 1, since
[p]Gm(x) = (1 + x)p − 1 ≡ 1 + xp − 1 = xp. An elliptic formal group law has height
1 or height 2. (Silverman [17, Ch. 7].)

Example 3.8. Over k = Fp there is a (p-typical) formal group law Fn (the
Honda formal group law) with [p]Fn(x) = xp

n

. (Ravenel [13, App. 2].)

4. The universal deformations

We define deformations and the deformation category, and introduce the uni-
versal deformations.

4.1. Deformations of a formal group law. Let (k,Γ) be a pair consisting
of a field k of characteristic p > 0 and a formal group Γ over k. A deformation
of (k,Γ) to a complete local ring B (with maximal ideal m = mB and projection
π : B → B/m) is a pair (G, i) consisting of a formal group law G over B and a
homomorphism i : k → B/mB, such that i∗Γ = π∗G.

A morphism of deformations (G1, i1) → (G2, i2) is defined only when i1 = i2,
in which case it consists of an isomorphism f : G1 → G2 of formal group laws over
B such that π∗f is the identity map of π∗G1 = π∗G2 = i∗1Γ = i∗2Γ. That is,

f(x) ≡ x mod mB.

Such an isomorphism f is sometimes called a ?-isomorphism.
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The category of deformations of Γ over B is denoted DefΓ(B). It’s nice to think
of this category using the following picture.

DefΓ(B) //

��

fgl(B)

��∐
i : k→B/m

{Γ} //
∐

i : k→B/m
fgl(k) // fgl(B/m)

This is a diagram of groupoids. The lower left-hand corner denotes the discrete
groupoid, having as objects the set of maps i : k → B/m, and as maps only identity
maps. This groupoid sits inside a coproduct of copies of the groupoid fgl(k); the
inclusion maps the “object” i to the pair (Γ, i), where G is a formal group law over
k and i : k → B/m a homomorphism. The lower right-hand functor maps such
objects to fgl(B/m) by sending (G, i) to i∗G. The diagram commutes, and is a
pull-back square of groupoids.

Remark 4.2. Given a morphism f : C → D of groupoids, the simplicial nerve
of f is a Kan fibration of simplicial sets if and only if f has the following property:
for each object c ∈ obC and morphism β : fc → d in D there exists an α : c → d′

in C such that fα = β.
Thus, if I apply the classifying space functor to the above diagram, the square

remains a pull-back square; furthermore, the right-hand vertical arrow becomes a
fibration. Thus, the diagram induces a homotopy pull-back square of classifying
spaces.

4.3. The Lubin-Tate theorem. Given j : k → B/m, let DefΓ(B)j denote
the full subgroupoid of DefΓ(B) consisting of those deformations (G, i) for which
i = j.

I will always feel free to replace a groupoid by its classifying space, and thus
will speak of π0 and π1 of a groupoid, meaning the corresponding homotopy groups
of its classifying space. Of course, if C is a groupoid then π0C is just the set of
isomorphism classes in C, and π1(C,X) (the fundamental group based at an object
X) is the group of automorphisms of the object X in C.

Theorem 4.4 (Lubin-Tate). [10] If Γ is a formal group law of height n < ∞
over k, and if D = (G, i) is some deformation of (k,Γ), then

π1
(
DefΓ(B)i, D

)
= {1},

and there is a bijection
π0
(
DefΓ(B)i

)
' m

×(n−1).

Furthermore, there exists a complete local ring E(k,Γ), an isomorphism i : k ∼−→
E(k,Γ)/m, and a formal group law F on E(k,Γ) such that the pair (F, id) is a
universal deformation, in the sense that the functor B 7→ π0 DefΓ(B) is corep-
resented by the ring E(k,Γ), so that a map φ : E(k,Γ) → B corresponds to the
isomorphism class of φ∗F in DefΓ(B).

An outline of the proof of Theorem 4.4 is given in Section 5.
Let me make clear what it means for (F, id) to be a universal deformation.

Given a deformation (G, i) of (k,Γ) to B, we have the following diagrams of rings
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and formal group laws.

E(k,Γ)

π

��

B

π

��

F

��
�O�O
�O G

��
�O�O
�O

k
i // B/m Γ ///o/o/o i∗Γ π∗G

(The squiggly arrows are meant to represent the action of a functor on an ob-
ject.) For (F, id) to be a universal deformation, there must exist a unique map
φ : E(k,Γ)→ B such that the object (φ∗F, i) is isomorphic to (G, i) in the category
DefΓ(B). Then there exists a (necessarily unique) ?-isomorphism g : G→ φ∗F . In
other words, you get a unique pair of diagrams

E(k,Γ)

π

��

φ // B

π

��

F

��
�O�O
�O

///o/o/o φ∗F

��
�O�O
�O G

��
�O�O
�Og

∼oo

k
i // B/m Γ ///o/o/o i∗Γ π∗G

where g(x) ≡ x mod mB.
The first part of Theorem 4.4 says that fgl(B)→ fgl(B/m) is a “covering space

up to homotopy”. Thus, an element in π1 of the base “space” fgl(B/m) induces
an action on π0 of the “fiber” DefΓ(B)i. In particular, given γ ∈ π1(fgl(k),Γ) '
Aut(Γ), we obtain an induced map γ̃ : π0 DefΓ(B)i → π0 DefΓ(B)i for each i : k →
B/m. Putting these together over all the i’s we get a map γ̃ : π0 DefΓ(B) →
π0 DefΓ(B). It’s easy to see that this action is natural in B; in other words, there
is an induced action of Aut(Γ) on the functor π0 DefΓ(−), and hence on the ring
E(k,Γ) which represents the functor.

If k = Fpn , and Γ = Fn is the Honda formal group law of height n, then Aut(Fn)
contains the n-th Morava stabilizer group Sn as the group of strict automorphisms
of Fn.

We can sometimes get a bigger group action on E(k,Γ). Suppose k is a finite
field, and fix a map i0 : k → B/m. Then maps i : k → B/m can be factored
i = i0σ

d, where σ : k → k denotes σ(x) = xp. If Γ is Galois invariant, i.e., if
σ∗Γ = Γ (for example, if Γ is the Honda formal group law), then there is an action
of Gal(Fpn /Fp ) = Cn on DefΓ(B), and hence on E(k,Γ).

4.5. The ring E(k,Γ). We can say something about the ring E(k,Γ), at least
if k is a perfect field. Since it is a complete local ring with residue field k, it must
contain the Witt vectors W k. For k = Fpn , W k = Zp[ζ], where ζ is a primitive
(pn − 1)st root of unity. For a perfect field k the Witt ring W k has the following
universal property; given a diagram

W k

��

// B

��
k // B/m

where B is a complete local ring and all maps are continuous homomorphisms,
there is a unique dotted arrow making the diagram commute. (This is essentially
[16, II.5].) This is easy to see when k = Fpn , since in this case the Teichmüller
construction ensures that one can produce a canonical multiplicative section k → B.
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Thus E(k,Γ) is a W k-algebra, and in fact contains W k (because there exists
at least one deformation of Γ to W k, so that there exists a map from E(k,Γ) back
down to W k.) Since a map i : k → B/m determines a unique map W k → B, making
B also into a W k-algebra, then the isomorphism of Theorem 4.4

HomWk- alg(E(k,Γ), B) ' π0 DefΓ(B)i ' m×(n−1)

indicates that we should set

E(k,Γ) ' W Fpn [[u1, . . . , un−1]].

4.6. Functoriality of the universal deformation. Consider a morphism
α : (k1,Γ1) → (k2,Γ2) in the category FG; α is a pair (j, f) with j : k2 → k1 and
f : Γ1

∼−→ j∗Γ2. Such a morphism induces a diagram∐
k1→B/m

{Γ1}

%%KK
KKK

KKK
KK

��

fgl(B/m)

∐
k2→B/m

{Γ2}

99ssssssssss

which commutes up to a homotopy (determined by f). This induces a map

π0 DefΓ1(B)→ π0 DefΓ2(B)

which is natural in B, and hence a map E(k2,Γ2) → E(k1,Γ1). Thus we obtain,
according to Theorem 4.4, a functor

FGop → {complete local rings}
sending

(k,Γ) 7→ E(k,Γ).

5. Construction of the universal deformation

I give a construction of the universal deformation, and at least indicate how the
proof goes. I mainly follow Lubin-Tate’s original proof [10], though I also borrow
an observation of Drinfel’d [4].

5.1. Deformations to a trivial square 0 extension over k. I want to give
at least an idea of how the proof goes. So what I’ll do first is compute DefΓ(k[ε]/ε2).

Let R = k[ε]/ε2. The inclusion k → R allows us to push a formal group law
Γ on k to R; by abuse of notation, I will also refer to the pushed-forward-to-R
formal group law as Γ. An arbitrary formal group law on R which lifts Γ must look
something like

F (x, y) = x+
Γ
y +

Γ
εG(x, y)

where G(x, y) ∈ k[[x, y]]. For F to really be a formal group law, we must also have
(a) G(x, 0) = 0 = G(0, y),
(b) G(x, y) = G(y, x),
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(c) G(x+
Γ
y, z) +G(x, y) = G(x, y +

Γ
z) +G(y, z).

Such a G is called a Γ-symmetric 2-cocycle. I’ll write Z2
sym(Γ) for the set of such

cocycles.
Now suppose I have another formal group law F ′(x, y) = x+

Γ
y+

Γ
εG′(x, y), and

a map f : F → F ′ which reduces to the identity map mod ε. Such an f has the
form,

f(x) = x+
Γ
εg(x)

for some g(x) ∈ k[[x]] with g(0) = 0. We shall call such a g a Γ-symmetric
1-cocycle, and write Z1

sym(Γ) for the set of all such cocycles.
Then f(x+

F
y) = f(x) +

F ′
f(y) if and only if

G(x, y) + g(x+
Γ
y) = G′(x, y) + g(x) + g(y).

This means that we can form a little chain complex:

0 //
{
g(x) ∈ k[[x]],
g(0) = 0

}
δ //

{
G(x, y) ∈ k[[x, y]],

G a Γ-symmetric 2-cocycle

}
// 0

where δg(x, y) = g(x) + g(y) − g(x +
Γ
y). The homology of this chain complex is

precisely the homotopy of DefΓ(R)id. That is, the cokernel of δ may be identified
with the set of isomorphism classes in DefΓ(R)id, and the kernel can be identified
as the group of automorphisms of any chosen object of DefΓ(R)id.

5.2. Lemmas about formal group laws. To compute this complex, we
need a couple of lemmas. First, note that an additive symmetric cocycle is a
symmetric cocycle for the additive group.

Lemma 5.3. An additive symmetric cocycle G(x,y), homogeneous of degree d,
has the form aCd(x, y) for some a ∈ k, and where Cd(x, y) ∈ Z[[x, y]] is defined by

Cd(x, y) =
1
λd

(xd + yd − (x+ y)d)

with

λd =

{
1 if d 6= pj

p if d = pj
.

Proof. See Fröhlich [7]. The proof is also given in [1, part 2].

Lemma 5.4. Let π : R → S be a surjective map of rings. If F (x, y) ∈ R[[x, y]]
satisfies the axioms for a formal group law modulo terms of degree (d+1), and if π∗F
is a formal group law over S, then there exists a formal group law F ′(x, y) ∈ R[[x, y]]
such that F ′ ≡ F mod degree (d+ 1) terms and such that π∗F ′ = π∗F .

Lemma 5.4 really follows from the theorem of Lazard.

Theorem 5.5 (Lazard). There exists a ring L ' Z[s1, s2, . . . ] and a formal
group law F over L such that the induced map

HomRing(L,R)→ ob fgl(R)

sending f 7→ f∗F is a bijection. Furthermore, if we write

x+
F
y = x+ y +

∑
i,j

aijx
iyj
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then aij ∈ L is a polynomial in the variables s1, . . . , si+j−1.

Proof. See [7], [1, part 2] or [13, Appendix 2].

Lemma 5.3 shows that any Γ-symmetric 2-cocycle has the form

Gd(x, y) = aCd(x, y) + higher degree terms,

since the lowest degree term of a Γ-symmetric 2-cocycle must necessarily be an
additive cocycle. Lemma 5.4 shows that such a Γ-symmetric 2-cocycle exists, since
the expression

F (x, y) = x+
Γ
y +

Γ
εCd(x, y)

is a formal group law modulo degree (d+ 1), and modulo m is the formal group law
Γ.

There is an obvious filtration · · · ⊃ FdZ
2
sym(Γ) ⊃ Fd+1Z

2
sym(Γ) ⊃ · · · of the

symmetric 2-cocycles in which FdZ
2
sym(Γ) consists of all elements whose lowest

degree term is at least d. Thus we have shown that the associated quotients of this
complete filtration FdZ

2
sym/Fd+1Z

2
sym are each isomorphic to k, generated by an

element Gd.
Similarly, there is a filtration · · · ⊃ FdZ

1
sym(Γ) ⊃ Fd+1Z

1
sym(Γ) ⊃ · · · where

FdZ
1
sym(Γ) consists of all elements whose lowest degree term is at least d. Thus

each associated quotient FdZ1
sym/Fd+1Z

1
sym is isomorphic to k, generated by an

element fd(x) = xd. Thus Z•sym is a filtered chain complex, and all we need to do
is calculate the associated spectral sequence!

Let’s assume that

Γ(x, y) = x+ y + bCpn(x, y) + · · · .
We can do this without loss of generality, by the following lemma, and by the fact
that isomorphic formal group laws have isomorphic complexes Z•sym of symmetric
cocycles.

Lemma 5.6. A height n formal group law Γ over k is isomorphic to a formal
group law Γ′ having the form

Γ′(x, y) = x+ y + bCpn(x, y) + · · · ,
with b 6= 0.

Proof. This is because if Γ has the form

Γ(x, y) ≡ x+ y + bCk(x, y) + (x, y)k+1

for k 6= pj, we can let f(x) = x + bxk and Γ′(x, y) = f(Γ(f−1x, f−1y)), whence
f : Γ→ Γ′ is an isomorphism of formal group laws, and

Γ′(x, y) ≡ x+ y + (x, y)k+1.

If Γ has the form

Γ(x, y) = x+ y + bCpj (x, y) + (x, y)p
j+1

one can show by Lemma 5.7 that [p]Γ(x) = bxp
j

+ · · · , hence b = 0 or j = n.
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Lemma 5.7. If F is a formal group law with

x+
F
y = x+ y + bCk(x, y) + · · ·

then
[n]F (x) = nx+ b{ 1

λk
(n− nk)}xk + · · · .

5.8. Computation of the chain complex. Let fk(x) = xk. Then

(δfk)(x, y) = xk + yk − (x+
Γ
y)k

=

{
Ck(x, y) + · · · if k 6= pj , where j ≥ 0,
bp
j

Cpn(x, y)p
j

+ · · · if k = pj , where j ≥ 0.

Since Cpn(x, y) = Cp(x, y)p
n−1

, we see that

δfk =

{
Gk mod Fk+1Z

2
sym if k 6= pj ,

Gpn+j mod Fpn+j+1Z
2
sym if k = pj .

Thus the cokernel of δ has dimension (n− 1) over k, generated by elements of the
form

G′pk(x, y) = Cpk(x, y) + · · ·
for k = 1, . . . , n− 1. The kernel of δ is trivial. Hence

π0 DefΓ(R)i = H2
sym(Γ) ' k×(n−1),

and
π1 DefΓ(R) ' 0.

5.9. The case of a general square-zero extension. The above argument
proves the first part of the Lubin-Tate theorem for B = k[ε]/ε2. The method of
proof extends to prove a more general statement.

Let B be a complete local ring B with maximal ideal m and residue field
k = B/m. Let Fk be a formal group law over B/mk and let Γ denote its push-
forward to k. Suppose Fk+1 is a formal group law over B/mk+1 which lifts Fk.
Then any other formal group law F ′k+1 over B/mk+1 which lifts Fk has the form

F ′k+1(x, y) = Fk(x, y) +
Fk+1

G(x, y)

where G(x, y) ∈ Z2
sym(Γ)⊗̂mk/mk+1. Furthermore, an isomorphism f : Fk+1 →

F ′k+1 which lifts the identity map of Fk has the form

f(x) = x +
Fk+1

g(x)

where g(x) ∈ Z1
sym(Γ)⊗̂mk/mk+1.

Thus the “fiber” of fgl(B/mk+1)→ fgl(B/mk) over Fk has H2
sym(Γ)⊗mk/mk+1

as its set of components, and H1
sym(Γ) ⊗ mk/mk+1 as the set of isomorphisms of

any object.
The above can be proved most easily by pulling back the map π : B/mk+1 →

B/mk along itself; the pulled-back map is a trivial square-0 extension, and the
argument of the previous sections can be applied to it.
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5.10. Construction of the universal deformation. To finish the proof,
we need to construct the universal deformation. This will be a formal group law
over the ring

E(k,Γ) = W k[[u1 , . . . , un−1]].
It turns out that it suffices to produce a formal group law over this ring which has
the form

F (x, y) ≡ x+
Γ
y +

Γ
u1Cp(x, y) +

Γ
· · ·+

Γ
un−1Cpn−1(x, y) +

Γ
· · ·

modulo p and modulo (u1, . . . , un−1)2. It is easy to construct such: we can define
a formal group law over k[[u1, . . . , un−1]]/(u1, . . . , un−1)2 by

x+
F
y = x+

Γ
y +

Γ
u1Gp(x, y) +

Γ
· · ·+

Γ
un−1Gpn−1(x, y),

where Gpj (x, y) ∈ Z2
sym(Γ) are the symmetric cocycles we constructed above. This

group law then lifts up to W k[[u1 , . . . , un−1]], by Lazard’s Theorem 5.5.
The proof is completed by considering the map

HomWk- alg(E(k,Γ), B)→ π0 DefΓ(B)i
which sends f to the isomorphism class of f∗F , where F is the above constructed
formal group law. The left hand side is isomorphic as a set to m×(n−1), which has
a natural filtration by powers of m. The right hand side also has a filtration via the
kernels of the maps π0 DefΓ(B)i → π0 DefΓ(B/mk)i, and one shows the map is an
isomorphism by comparing filtration quotients; of course, if B = k[ε]/ε2, then it is
clearly an isomorphism by what we have shown.

Example 5.11. Let n = 1 and k = Fp , and consider the multiplicative formal
group law Gm(x, y) = x+ y + xy over Fp . Then

E(Fp , Gm) ' Zp
and we can take as the universal deformation F (x, y) = x+ y + xy.

6. The homology theories Ek,Γ

In this section we use universal deformation theory to construct homology the-
ory Ek,Γ for each formal group law (k,Γ). In fact, we construct a functor E from
the category FG of formal group laws to the category of homology theories.

6.1. Complex orientations and formal group laws. A reference for ma-
terial in this section is from [1, part 2].

A ring spectrum E is complex orientable if there exists a cohomology class
x ∈ Ẽ2

C P
∞ such that the restriction of this class to C P1 ' S2 is the generator of

Ẽ2S2 ' π0E. Such a class determines a characteristic class c1(L) ∈ E2(X) for a
complex line bundle L over X .

For a complex oriented cohomology theory, E∗C P∞ ' E∗[[x]]. Thus the orien-
tation determines a formal group law F , induced by the map C P∞× C P∞ → C P

∞

which corresponds to tensor product of line bundles. Thus

c1(L⊗ L′) = c1(L) +
F
c1(L′).

Note that this formal group law is of the form

F (x, y) = x+ y +
∑
ij

aijx
iyj
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for aij ∈ π2(i+j−1)E. I’ll call this a degree −2 formal group law, since the equa-
tion defining F (x, y) is in degree −2. (That is, it’s an element of π−2F(C P∞, E),
where F(X,Y ) denotes the function spectrum from X to Y .)

For example, the complex cobordism spectrum MU is complex orientable. The
two inclusions of ηL, ηR : MU � MU ∧MU induce two formal group laws over
MU∗MU and a canonical strict isomorphism between them.

Theorem 6.2 (Quillen). The canonical formal group law F over MU∗ is the
universal formal group law (of degree −2) in the sense that, given a formal group
law G of degree −2 over a graded ring R∗, there exists a unique map φ : MU∗ → R∗
such that φ∗F = G.

Furthermore, the canonical isomorphism f : η∗RF → η∗LF over MU∗MU is the
universal strict isomorphism in the sense that, given a strict isomorphism g : G→
G′ of formal group laws over R∗, there exists a unique map ψ : MU∗MU → R∗
such that ψ∗f = g.

Sometimes we want to consider a cohomology theory E which is periodic; e.g.,
which has an element u ∈ π2E which is invertible. Such an element will allow us
to switch between degree −2 formal group laws and degree 0 ones (a degree 0
formal group law is one whose coefficients lie in degree 0).

Let R∗ be a graded ring, such that R2 contains an invertible element. Given a
formal group law F defined over R0 and a chosen invertible element uF ∈ R2, we
produce a degree −2 formal group law as follows: define

F̄ (x, y) = u−1
F F (uFx, uF y).

Thus if F (x, y) =
∑
aijx

iyj, then F̄ (x, y) =
∑
aiju

i+j−1
F xiyj is a degree −2 formal

group law.
Given a morphism g : F → G of formal group laws over R0, and chosen elements

uF , uG ∈ R2, we of course get corresponding formal group laws F̄ and Ḡ of degree
−2; let

ḡ(x) = u−1
G g(uFx).

Then ḡ : F̄ → Ḡ is a morphism of degree −2 formal group laws. Note that ḡ′(0) =
u−1
G uF g

′(0).

6.3. The Landweber exact functor theorem. Given (k,Γ) ∈ FG we define
a functor Ek,Γ on spaces by

(Ek,Γ)∗(X) ' E(k,Γ)[u±]
F̄
⊗
MU∗

MU∗(X).

The “F̄” sitting on top of the tensor product symbol is meant to symbolize the fact
that the tensor product is induced by the map MU∗ → E(k,Γ)[u±] which classifies
F̄ , which is the degree −2 formal group law induced from F using uF = u. That
this is a homology theory comes from the Landweber exact functor theorem, as we
will show below.

Theorem 6.4 (Landweber). Let R be a MU∗ module. Suppose for each prime
p and each n the map

R/p, . . . , vn−1
·vn−−→ R/p, . . . , vn−1
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is injective, where vn is the coefficient of xp
n

in the p-series of the universal formal
group law over MU∗. (That is, p, v1, v2, . . . is a regular sequence for R.) Then the
functor

X 7→ R∗ ⊗
MU∗

MU∗(X)

is a homology theory.

Proof. Proved in [8].

Proposition 6.5. The map F̄ : MU∗ → E(k,Γ)[u±] which classifies a degree
−2 universal deformation satisfies the hypotheses of the Landweber exact functor
theorem.

We will return to the proof of Proposition 6.5 in section 6.7.

Remark 6.6.

1. If R∗ is a ring with a degree −2 formal group law F̄ , we use the classifying
map MU∗ → R∗ to produce the module structure on R∗.

2. It turns out that if we have two degree −2 formal group laws F̄ and Ḡ over
R∗ which satisfy the Landweber condition, and are strictly isomorphic by a
strict isomorphism ḡ, there is an induced equivalence of homology theories,
via a map

R∗
F̄
⊗
MU∗

MU∗(X)→ R∗
F̄
⊗
MU∗

MU∗MU ⊗
MU∗

MU∗(X)→ R∗
Ḡ
⊗
MU∗

MU∗(X)

where the left hand map is induced by the comultiplication

MU∗ →MU∗MU ⊗
MU∗

MU∗X,

and the right hand map is induced by the map MU∗MU → R∗ which
classifies ḡ.

6.7. Construction of the functor. We define a functor

E : FGop → {homology theories},
as follows. For each object (k,Γ) in FG, choose a universal deformation F of (k,Γ)
to the ring E(k,Γ), and let Ek,Γ be the homology theory constructed above using
the Landweber theorem. Let E(k,Γ)∗ = E(k,Γ)[u±F ] denote the corresponding
graded ring

Suppose we have a map α : (k1,Γ1) → (k2,Γ2) in FG; such an α consists of
maps i : k2 → k1 and f : Γ1 → i∗Γ2. Given universal deformations F1 of (k1,Γ1)
and F2 of (k2,Γ2), we get an induced map

ψ : E(k2,Γ2)→ E(k1,Γ1)

and an isomorphism
g : F2 → ψ∗F1

such that g ≡ f mod m. That is, (ψ, g) is the unique pair of maps fitting into the
diagrams

E(k2,Γ2)

π

��

ψ // E(k1,Γ1)

π

��

F2

��
�O�O
�O

///o/o/o ψ∗F2

�� �O
�O�O

F1

��
�O�O
�Og

∼oo

k2
i // k1 Γ2 ///o/o/o i∗Γ2 Γ1

f

∼oo
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We extend ψ to a map E(k2,Γ2)[u±F2
]→ E(k1,Γ1)[u±F1

] by sending

ψ(uF2) = g′(0)uF1 .

The point here is that we have a diagram

E(k2,Γ2)∗

ψ

��

MU∗

F̄2

99ssssssssss

F̄1 %%KK
KKK

KKK
KK

E(k1,Γ1)∗

which does not commute, since ψ∗F̄2 6= F̄1. Instead, we may define Eα : Ek2,Γ2 →
Ek1,Γ1 to be the natural isomorphism of homology theories defined via the composite

E(k2,Γ2)∗
F̄2⊗
MU∗

MU∗(X)→ E(k1,Γ1)∗
ψ∗F̄2
⊗
MU∗

MU∗(X) ∼←− E(k1,Γ1)∗
F̄1⊗
MU∗

MU∗(X)

where the left hand arrow is induced by ψ, and the right hand arrow is induced by
the strict isomorphism ḡ : F̄1 → ψ∗F̄2 defined by

ḡ(x) = (ψuF2)−1g(uF1x) = x+ · · · .
It is not too hard to show that E so defined is really a functor.

Example 6.8. Let (k,Γ) = (Fp , Gm). Then Aut(k,Γ) ' Z
×
p , where n ∈ Zp

corresponds to the map
[n]Γ(x) = (1 + x)n − 1.

Since this has height one, E(k,Γ) ' Zp. We can use the multiplicative formal group
law as its own universal lift:

x+
F
y = x+ y + xy.

This induces a degree −2 formal group law on Zp[u±] given by

x+
F̄
y = x+ y + uxy.

The morphism [n]Γ(x) therefore lifts to an automorphism [n]F (x) = (1 +x)n− 1 =
nx+ · · · of F , and hence induces an automorphism [n]F̄ (x) = u−1

(
(1+ux)n−1

)
of

F̄ . We thus see that an automorphism [n]Γ of Γ lifts to a map ψn : Zp[u±]→ Zp[u±]
which sends ψn(u) = nu.

The theory EFp,Gm is precisely complex K-theory completed at p, and the ψn’s
are precisely the Adams operations.

6.9. Proof of Landweber exactness. It remains to show that the map
MU∗ → E(k,Γ)[u±] is Landweber exact. It clearly suffices to show that that
the sequence p, w1, w2, . . . is regular in E(k,Γ), where

[p]F (x) = px+ · · ·+ w1x
p + · · ·+ w2x

p2
+ · · · .

(In fact, wi = viu
1−pi .)
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The cokernel of multiplication by p is k[[u1, . . . , un−1]]. We need to compute the
p-series of F over this ring. By Lemma 5.6 we can assume without loss of generality
that x+

Γ
y = x+ y + bCpn(x, y) + · · · , whence

x+
F
y ≡ x+ y + u1Gp(x, y) + · · ·+ un−1Gpn−1(x, y) + bCpn(x, y) + · · ·

modulo p and (u1, . . . , un−1)2 for certain Γ-symmetric 2-cocycles Gi. Recall that

Gpi(x, y) = Cpi(x, y) + higher terms.

Lemma 6.10. We have that

[p]F (x) = uix
pi + · · ·

modulo p, u1, . . . , ui−1 and (ui, . . . , un−1)2, and

[p]F (x) = bxp
n

+ · · ·
modulo p, u1, . . . , un−1.

Proof. This is an immediate consequence of Lemma 5.7.

Lemma 6.10 implies that the inclusion

k[[w1, . . . , wn−1]]→ k[[u1, . . . , un−1]]

is in fact an isomorphism (since the Jacobian matrix (∂wi∂uj
) modulo (u1, . . . , un−1)2

is upper triangular with ones on the diagonal by Lemma 6.10.) Clearly, the sequence
w1, w2, . . . is regular in this ring.

7. The construction

In the next few sections I will discuss the category of spectra (after Lewis-
May-Steinberger), and categories of A∞-ring spectra, denoted A∞. The first thing
to note is that A∞ is a topological category; i.e., for any two objects, there is a
topological space of maps. (See Section 12.)

Let ALT
∞ ⊂ A∞ denote the full topological subcategory consisting of A∞-ring

spectra E such that
1. E is cofibrant as an A∞ ring, (see Section 12),
2. the underlying spectrum of E is a homotopy commutative ring spectrum,

which
3. has πoddE = 0,
4. has an invertible element in π2E, and such that
5. π0E is a complete local ring, with maximal ideal m, such that
6. π0E/m is a perfect field of non-zero characteristic, for which
7. the degree 0 formal group law F over π0E, (which exists because E is com-

plex orientable by properties 2 and 3, see [1, part 2]), is a universal defor-
mation of its reduction modulo m.

Thus there is a functor

A∞ ⊃ ALT
∞

π−→ FGop,

sending E 7→ (π0E/m, F ).
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Theorem 7.1. The functor π is a weak equivalence of topological categories.
That is, π is surjective on isomorphism classes of FG, and for each E,F ∈ ALT

∞
induces a weak equivalence

mapA∞(E,F )→ FG(πF, πE)

where the set on the right hand side is viewed as a space with the discrete topology.

Proof. The theorem will follow from Corollary 14.6 and Corollary 22.7.

Here’s how you get Theorem 2.1 from Theorem 7.1. First, choose a small model
for the category of formal group laws FG; for example, we could fix an algebraically
closed field K of characteristic p and require that FG only contain those objects
(k,Γ) for which k ⊂ K. Likewise, choose a small model for ALT

∞ . Now we can
perform a “homotopy right Kan extension” of the topological functor i : ALT

∞ → A∞
along the functor π : ALT

∞ → FGop, obtaining a functor ρ : FGop → A∞. (Homotopy
right Kan extensions are a generalization of the notion of a homotopy inverse limit.)
By some general nonsense about homotopy Kan extensions one discovers that ρ
has the desired properties; in particular, if (k,Γ) = π(E), then ρ(k,Γ) is weakly
equivalent to E.

Part 2. Spectra and A∞-ring spectra

In the following sections I collect the results we need about spectra and A∞-
ring spectra. I only summarize the facts needed; one should consult the original
sources for details and proofs of this material. The category of spectra I use is
that of Lewis, May, and Steinberger [9]; in addition to their book, one should
also consult the work of Elmendorf, Kriz, Mandell, and May [6], which refines and
extends the constructions of [9]. (Note, however, that we make no use the theory of
“S-modules” which is the main objective of [6].) In addition, I make use results of
Hopkins, McClure, and Goerss on the closed model category structure for various
categories of spectra; some of this work has not seen print.

I then (in Section 14) set up a spectral sequence and obstruction theory for
computing maps between A∞-ring spectra in the cases we need to consider.

8. Spectra

I give a sketch of the theory of spectra of Lewis, May, and Steinberger [9]; see
also [6]. I will omit many details.

We work in the category of compactly generated weak Hausdorff spaces, de-
noted Top. The category of pointed compactly generated weak Hausdorff spaces is
denoted T. This means that

map∗(X ∧ Y,Z) ' map∗(X,map∗(Y,Z)),

where map∗ denotes the space of pointed maps with an appropriate topology.
A universe U is a countably dimensional real inner-product space. For exam-

ple, R∞ is a universe. An indexing set A in U is a collection of finite dimensional
vector subspaces of U such that any finite dimensional subspace of U is contained in
some element of A. Thus, A = {R0 ,R1 ,R2 , . . . } is a indexing set in R∞ . By abuse
of notation, we let U denote the indexing set consisting of all finite dimensional
subspaces of U .
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Let SV denote the one-point compactification of the vector space V , and let
W − V denote the orthogonal complement of V in W . A prespectrum on A is a
collection of spaces XV for each V ∈ A and maps

iV,W : XV ∧ SW−V → XW

for each pair V,W ∈ A with V ⊂W , such that for each V1 ⊂ V2 ⊂ V3 the diagram

SV3−V2 ∧ SV2−V1 ∧XV1

∼

��

SV3−V1 ∧XV1

��
SV3 ∧XV2

// XV3

commutes.
A map of prespectra f : X → Y is a collection of maps fV : XV → YV com-

muting with all the structure. We denote the category of prespectra by PA.
Note that each structure map iV,W is adjoint to a map

ı̂V,W : XV → ΩW−VXW ,

where ΩVX = map∗(SV , X). A spectrum on A is a prespectrum X on A for
which each map ı̂V,W is a homeomorphism. The category of spectra SA is the full
subcategory of PA consisting of the spectra.

Given two prespectra X and Y , we can topologize the pointed set of maps
PA(X,Y ) as a subspace of

∏
V ∈Amap∗(XV , YV ). It is not hard to see that the

composition maps PA(X,Y ) ∧ PA(Y,Z) → PA(X,Z) are continuous. Thus PA
is a topological category. Likewise we set SA(X,Y ) = PA(X,Y ), making SA into
a topological category.

First we note that these indexing sets are not too important.

Proposition 8.1. If A is an indexing set of U then the functor SU → SA
induced by restriction is an equivalence of categories.

Proof. Given X ∈ SA, we can produce a spectrum X ′ ∈ SU by setting X ′V =
ΩW−VXW where W ∈ A is some subspace of U containing V . It straightforward
to check that this is well-defined, and produces the equivalence of categories.

The following proposition says that any prespectrum can be turned into a
spectrum. It is crucial and non-trivial.

Proposition 8.2. [9, Appendix] There is a pair of adjoint functors

` : PA� SA : r

where r is inclusion of subcategories. Furthermore, `r ' 1, and the functors ` and
r are continuous (i.e., induce continuous maps on function spaces).

As a consequence, it follows that spectra have all small limits and colimits.
Prespectra have limits and colimits which are computed space-wise. Limits of
spectra can also be computed space-wise, since Ω commutes with limits of spaces.
Colimits of spectra are computed by colimI X ' `X ′ where X ′ is the prespectrum
defined by X ′V = colimI XV .
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8.3. Constructions of spectra. Given a space X , define a prespectrum
Σ∞preX by

(Σ∞preX)V = SV ∧X,
with the obvious structure maps, and define the suspension spectrum Σ∞X by
Σ∞X = `(Σ∞preX). This has the property that

SU(Σ∞X,Y ) ' map∗(X,Y0).

For each finite V ⊂ U we define a prespectrum S−Vpre by

(S−Vpre )W =

{
SW−V if V ⊂W ,
∗ otherwise,

with the obvious structure maps. Define a sphere spectrum S−V by S−V =
`(S−Vpre ). Such an object has the property that

SU(S−V , Y ) ' YV .
For an unpointed space K and a spectrum X over U we define spectra K ⊗X

and XK as follows. Let XK be defined by

XK = map(K,XV ).

It is not hard to check that XK is a spectrum. Let (K ⊗X)pre be the prespectrum
defined by

(K ⊗X)pre
V = K+ ∧XV ,

and let K ⊗ X = `(K ⊗ X)pre denote the corresponding spectrum. We have the
following fact.

Proposition 8.4. [9, I, Prop. 3.3] Given K ∈ Top and X,Y ∈ SU there are
natural isomorphisms

SU(K ⊗X,Y ) ' map(K,SU(X,Y )) ' SU(X,Y K).

This means we can define things like homotopies between maps. Given maps
f, g : X → Y of spectra in SU a homotopy can be taken to be a map

H : I → SU(X,Y )

such that H(0) = f and H(0) = g, or equivalently as a map

H ′ : I ⊗X → Y

or a map
H ′′ : X → Y I .

We can think of the object I⊗X as a cylinder on X , and Y I as a spectrum of paths
on Y . We can use these kinds of constructions to produce mapping-cylinders, path
fibrations, and other nifty constructions.

There are constructions analogous to K ⊗X and XK which we can carry out
when K is a pointed space. I only give one example: for a pointed space K and
spectrum X let (K ∧X)pre be the prespectrum defined by

(K ∧X)pre
V = K ∧XV ,

and let K ∧X = `(K ∧X)pre. Then we have

Proposition 8.5. Given K ∈ T and X,Y ∈ SU there is a natural isomorphism

SU(K ∧X,Y ) ' map∗
(
K,SU(X,Y )

)
.
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8.6. Model category structure. We say a map f : X → Y in SU is a weak
equivalence if for each V ⊂ U the induced map fV : XV → YV is a weak equiv-
alence of pointed spaces. We can define homotopy groups of a spectrum X as
follows: for each n ∈ Z, choose a vector space V ⊂ U such that n+dim(V ) = m ≥ 0,
and write

πn(X) = πm(XV ).
One can show that this doesn’t depend on the choice of V . Thus, a weak equivalence
of spectra is just a map which induces isomorphisms on stable homotopy groups.

Proposition 8.7. [6, Thm. 4.4] The category of spectra SU admits the struc-
ture of a Quillen closed model category, such that a map f : X → Y is a

1. weak equivalence if each map fV : XV → YV is a weak equivalence of spaces,
2. fibration if each map fV : XV → YV is a Serre fibration,
3. cofibration if f is a retract of a map f ′ which is obtained by successively

gluing on “cells” of the form

∂∆n ⊗ S−V → ∆n ⊗ S−V

where n ≥ 0, V ⊂ U , and ∆n denotes the Euclidean n-simplex.
Furthermore, this structure gives SU the structure of a topological model category.

I won’t say what all this means. Quillen closed model categories are defined in
[11]. The existence of such a structure implies, among other things, that we can
form a homotopy category HoSU by formally inverting the weak equivalences in
SU .

The statement that SU is a topological model category means that for a cofi-
bration i : X → Y and a fibration p : E → F of spectra, the induced map of spaces

f : SU(Y,E)→ SU(X,E) ×
SU(X,F )

SU(Y, F )

is a Serre fibration, and that if either i or p is also a weak equivalence, then so is
f . (This is analogous to Quillen’s notion of a simplicial model category [11].)

9. Smash products

In this section I develop the “external” smash product and related construc-
tions.

9.1. Smash product. Given universes U and U ′, then the product space
U × U ′ is another universe. Let

A = {V ×W ⊂ U × U ′ | V ⊂ U , V ′ ⊂ U ′}.
This is an indexing set of U × U ′. Given X ∈ SU and Y ∈ U ′ define

(X ∧ Y )pre
V×W = XV ∧ YW ;

this is a prespectrum over A, where the structure maps are

SV
′×W ′−V×W ∧XV ∧ YW ' SV

′−V ∧ SW ′−W ∧XV ∧ YW → XV ′ ∧ YW ′ .
Then let

X ∧ Y = `(X ∧ Y )pre ∈ SA ' S(U × U ′).
Thus we obtain a smash product functor

− ∧− : SU × SU ′ → S(U × U ′).
As an example, we have
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Proposition 9.2. For V ⊂ U and W ⊂ U ′ there is a natural isomorphism

S−V ∧ S−W ' S−V×W

of spectra over U × U ′.
Proof. We compute on the level of prespectra, and then spectrify. If V ⊂

V ′ ⊂ U and W ⊂W ′ ⊂ U ′ we get

(S−V ∧ S−W )pre
V ′×W ′ ' SV

′−V ∧ SW ′−W ' SV ′×W ′−V×W ' (S−V×W )pre
V ′×W ′ .

Hence the corresponding spectra are isomorphic.

9.3. Function spectra. Let’s fix a Y ∈ SU ′. Then the functor −∧Y : SU →
S(U × U ′) has a right adjoint, namely the function spectrum

F (Y,−) : S(U × U ′)→ SU .
By this adjoint functor characterization, we see that for V ⊂ U we must have

F (Y,Z)V ' SU(S−V , F (Y,Z)) ' S(U × U ′)(S−V ∧ Y,Z),

and since we have already defined the smash product, we can use this observation
to define F (Y,Z) by the above formula. One has that for V ⊂W ⊂ U ,

SW−V ∧ S−W ' S−V

as one can see by checking this formula on the level of prespectra:

(SW−V ∧ S−W )pre
W ′ ' SW−V ∧ SW

′−W ' SW ′−V ' (S−Vpre )W ′ .

Thus the structure maps of F (Y,Z) are defined to be the natural isomorphisms

F (Y,Z)V = S(U × U ′)(S−V ∧ Y,Z)

' S(U × U ′)(SW−V ∧ S−W ∧ Y,Z)

' ΩW−V S(U × U ′)(S−W ∧ Y,Z)

= ΩW−V F (Y,Z)W

and we see that F (Y,Z) is indeed a spectrum.
One can show that if K is an unpointed space and X a spectrum, then XK '

F (Σ∞K+, X).

9.4. Associativity. The significant property of this category of spectra which
we need is associativity of the smash product. If X ∈ SU1, Y ∈ SU2 and Z ∈ SU3,
then there is a natural isomorphism

(X ∧ Y ) ∧ Z ' X ∧ (Y ∧ Z)

of spectra over U1×U2×U3. In fact, both sides of the above equation are naturally
isomorphic to the spectrification of the prespectrum defined by

V1 × V2 × V3 7→ XV1 ∧ YV2 ∧ ZV3 .

10. Change of universe functors

I will talk about several different constructions which allow you to compare
spectra which are defined over different universes. Some of the material of this
section is in [9, Ch. II] and [6, App. A].
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10.1. Push-forward and pull-back. Given a linear isometric embedding of
universes f : U → U ′, that is, a vector space map which preserves the inner product,
we produce functors

f∗ : SU � SU ′ : f∗

called push-forward and pull-back. Pull-back is easy; for V ⊂ U and Y ∈ SU ′
let

(f∗Y )V = YfV ,

where fV ⊂ U ′ denotes the image of V under f . The natural homeomorphism
SV ' SfV induced by f produces isomorphisms

ΩW−V (f∗Y )V ' map∗(S
W−V , YfV ) ' map∗(S

fW−fV , YfV ) ' YfW = (f∗Y )W .

Thus f∗Y is a spectrum over U .
Push-forward is a little more complicated. We define a pre-spectrum (f∗X)pre

as follows. For W ⊂ U ′ let

(f∗X)pre
W = SW−fV ∧XV

where V = f∗(fV ∩W ). In other words, V is the largest subspace of U which maps
into W . If W ⊂W ′ let V ′ = f∗(fV ′ ∩W ′), whence we get structure maps

SW
′−W ∧ (f∗X)pre

W ' SW ′−W ∧ SW−fV ∧XV ' SW
′−fV ′ ∧ SV ′−V ∧XV

−→ SW
′−V ′ ∧XV = (f∗X)pre

W ′ .

Of course we let f∗X = `(f∗X)pre ∈ SU ′.
We compute that f∗S−V ' S−fV , by a sequence of adjunctions

SU ′(f∗S−V , Y ) ' SU(S−V , f∗Y ) ' (f∗Y )V = YfV ' SU ′ ∗ S−fV , Y ).

Note that if the linear isometry f : U → U ′ is an isomorphism of universes,
then the definition of f∗X simplifies to (f∗X)W = Xf∗W , and so f∗ and f∗ form
an adjoint equivalence of categories.

10.2. Many smash products. We can now use the push-forward functors to
define many smash product functors from the category of spectra over U to itself.
Let Un = U × · · · × U . Then for X1, . . . , Xn ∈ SU and for some linear isometric
map f : Un → U we define a functor SUn → SU by

X1, . . . , Xn 7→ f∗(X1 ∧ · · · ∧Xn).

Note that if i : U1 → U2 and j : U2 → U3 then (j ◦ i)∗X ' j∗i∗X . Thus, given
f : U2 → U and g : U2 → U we can compose smash product functors, so that

f∗(g∗(X ∧ Y ) ∧ Z) ' (f ◦ (g × 1))∗(X ∧ Y ∧ Z)

where f ◦ (g × 1)): U3 → U denotes the composite map on universes.

10.3. “Twisted” constructions involving the linear isometries space.
Let L(U ,U ′) denote the set of all linear isometries from U to U ′. Topologize this
space by the compact-open topology. Then one has the following result.

Proposition 10.4. [9, II, Lemma 1.5] The space L(U ,U ′) is contractible.
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For us, this means that we have a space L(Un,U) which parameterizes all pos-
sible ways of smashing n things together, and this parameter space is contractible.
One would like to somehow glue “all” these smash-products together and get a
super-universal smash product functor from SU to itself.

For the time being let’s write L for L(U ,U ′). For maps of topological spaces
T → L and T ′ → L let mapL(T, T ′) ⊂ map(T, T ′) denote the space of maps
T → T ′ which commute with the projections to L. Let Top denote the category of
unpointed spaces, and let (Top ↓ L) denote the category of spaces over L.

Proposition 10.5. Given t : T → L ∈ (Top ↓ L), X ∈ SU and Y ∈ SU ′ there
exist functorial constructions

• T oX ∈ SU ′,
• Y T ∈ SU ,
• S(X,Y )→ L ∈ (Top ↓ L),

such that there are natural isomorphisms

SU ′(T oX,Y ) ' mapL
(
T,S(X,Y )

)
' SU(X,Y T ),

and such that if T = {f} → L is a single point, then
• {f}oX ' f∗X,
• Y {f} ' f∗Y , and
• mapL

(
{f},S(X,Y )

)
' SU ′(f∗X,Y ) ' SU(X, f∗Y ), or in other words, the

fiber of the map S(X,Y ) → L(U ,V) over the point f is homeomorphic to
the above spaces.

The construction T oX is known as the twisted half-smash product.
First I’ll outline a construction of T oX . First, suppose T is a compact space.

For V ⊂ U let T (V ) ⊂ U ′ denote the union of all fV ⊂ U ′ as f ranges over
all elements in the image of ξ : T → L. Since T is compact there exists a finite
dimensional vector subspace W ⊂ U ′ such that T (V ) ⊂ W . Conversely, for each
W ⊂ U ′ there is a largest V ⊂ U such that T (V ) ⊂W .

Given such V and W with T (V ) ⊂ W , let ξ(V ) → T denote the vector sub-
bundle of the trivial bundle W ×T → T such that over t ∈ T the fiber is ξ(t)(V ) ⊂
W . Let W − ξ(V ) denote the orthogonal complement bundle of ξ(V ) in W × T ,
and let TW−ξ(V ) denote the Thom space. Define

(T oX)pre
W = TW−ξ(V ) ∧XV .

Suppose W ⊂ W ′ ⊂ U ′. Then there are corresponding spaces V ⊂ V ′ ⊂ U and
sub-bundles ξ(V ) ⊂ ξ(V ′) of W ′ × T . Then

(W ′ −W )× (W − ξ(V )) 'W ′ − ξ(V ) ' (W ′ − ξ(V ′))× (V ′ − V )

since ξ(V ′)− ξ(V ) can be identified with a trivial bundle with fiber V ′ − V . Thus
structure maps are defined by

SW
′−W ∧ (T oX)pre

W ' SW ′−W ∧ TW−ξ(V ) ∧XV

' TW ′−ξ(V ′) ∧ SV ′−V ∧XV

→ TW
′−ξ(V ′) ∧XV ′ = (T oX)pre

W ′ .

Of course, we now let T o X = `(T o X)pre. Note that if T = {f} ∈ L then we
have just recovered the construction of f∗X .
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If T is not compact, then we let

T oX = colimK⊂T K oX

as K ranges over all the compact subspaces of T .
For S(X,Y ), we let this be equal as a set to

S(X,Y ) =
∐
f∈L
SU(X, f∗Y ).

This has a natural map π : S(X,Y )→ L. We topologize it by giving it the largest
topology such that a map f : T → S(X,Y ) is continuous map if and only if

1. the composite πf : T → L is continuous, and
2. the corresponding map T oX → Y is a map of spectra.

This last is a construction of Elmendorf [5].

10.6. Applications of the twisted constructions. We need one more set
of facts about all these constructions; namely, that they preserve features of the
model category structure as best as is possible. Since I haven’t been explicit about
model category structures I won’t give the general statement, but here are some
consequences.

1. If T → L with T a CW-complex, and X ∈ SU a cofibrant spectrum, then
T oX ∈ SU ′ is cofibrant.

2. If T
f−→ T ′ → L is such that f is a weak equivalence between CW-complexes,

and X ∈ SU is a cofibrant spectrum, then T o X → T ′ o X is a weak
equivalence of spectra over U ′.

3. If T → L with T a CW-complex, and X → Y a weak equivalence between
cofibrant spectra over U , then T o X → T o Y is a weak equivalence of
spectra over U ′.

4. If X ∈ SU is a cofibrant spectrum, and Y → Y ′ ∈ SU ′ is a weak equivalence
of cofibrant spectra, then X ∧ Y → X ∧ Y ′ is a weak equivalence of spectra
over U × U ′.

5. If X ∈ SU is a cofibrant spectrum, and Y ∈ SU ′, then S(X,Y ) → L is a
Serre fibration.

Corollary 10.7. If f, g : U → U ′ are linear isometries, and X ∈ SU a cofi-
brant spectrum, then f∗X and g∗Y are weakly equivalent as spectra over U ′, and
furthermore this weak equivalence may be chosen canonically up to homotopy.

Proof. Chose a path γ : I → L between f and g (recall that L is contractible).
Then we get a diagram

f∗X ' {f}oX → I oX ← {g}oX

where each of the maps is a weak equivalence by (2) above, since the unit interval
I is certainly a CW-complex. Similarly, given two homotopies γ and γ′, an argu-
ment involving homotopies between homotopies shows that the weak equivalence
is canonical up to homotopy.

Corollary 10.8. For any two universes U and U ′, the homotopy categories
of spectra HoSU and HoSU ′ are canonically equivalent.

Corollary 10.9. For any cofibrant X,Y ∈ SU and f, g ∈ L(U2,U) the smash
products f∗(X∧Y ) and g∗(X∧Y ) are canonically weakly equivalent, and thus there
is a canonical smash product defined on the level of the homotopy category.
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11. Operads

I give a couple of definitions of operads.

11.1. Definition of operads. An operad in Top is a collection of spaces
{C[n]}n≥0 equipped with the following structure:

1. a right action of Σn on C[n],
2. a distinguished point 1 ∈ C[1],
3. and for each sequence I = (i1, . . . , ik) of non-negative integers (k ≥ 0), and
i1 + · · ·+ ik = n a map

C[k]× C[i1]× · · · × C[ik]→ C[n].

Notationally, this map sends f ∈ C[k], gj ∈ C[ij ] to f{g1, . . . , gk}.
In addition, the following relations must hold.

1. 1{g} = g for g ∈ C[n],
2. f{1, . . . , 1} = f for f ∈ C[k],
3. for f ∈ C[k], gj ∈ C[ij ], and hj,` ∈ C[mj,`],

f{g1{h1,1, . . . , h1,m1}, . . . , gk{hk,1, . . . , hk,mk} = (f{g1, . . . , gk}){h1,1, . . . , hk,mk}},
4. (fσ){g1, . . . , gk} = f{gσ1, . . . , gσk} for f ∈ C[k], gj ∈ C[ij], and σ ∈ Σk,
5. f{g1σ1, . . . , gkσk} = f{g1, . . . , gk}σ1× · · · ×σk for f ∈ C[k], gj ∈ C[ij ], and
σj ∈ Σij .

A map of operads C → D is a collection of continuous maps C[n]→ D[n] which
commute with all the structure.

11.2. Examples of operads. Given a space X ∈ Top, define EX by

EX [n] = map(Xn, X).

It is not hard to see that EX is an operad, under composition of functions. It is
called the endomorphism operad of X . Likewise, the spaces L[n] = L(Un,U)
also form an operad under composition, called the linear isometries operad.

Another example of an operad is the associative operad. Let A[n] denote
the set of monomials of length n in n distinct non-commuting formal variables
t1, . . . , tn. E.g., A[2] = {t1t2, t2t1}. Write f(t1, . . . , tn) for a general element of
A[n], and write 1 ∈ A[0] for the “empty” monomial, (not to be confused with the
distinguished element of A[1], which is denoted t1). Then A is an operad, under
“composition” of formal monomials; that is,

f{g1, . . . , gk}(t1, . . . , tn)

= f(g1(t1, . . . , ti1), g2(ti1+1, . . . , ti1+i2), . . . , gk(ti1+···+ik−1+1, . . . , tn)).

If X is a topological monoid, then you can produce a map A → EX of operads by
evaluation, i.e.,

f(t1, . . . , tn) 7→ ((x1, . . . , xn) 7→ f(x1, . . . , xn)).

In fact, giving the structure of a topological monoid on X is precisely equivalent to
giving a map of operads from A to EX .
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11.3. Σ-objects. I need a description of operads which shows off some of
their other facets, and will be useful in Section 23. This definition works in any
symmetric monoidal category. The primary example of interest here is the category
of topological spaces, with cartesian product as monoidal product. To keep things
simple, I state the definitions in terms of the category Top. But one should keep
in mind that things work in a general symmetric monoidal category.

A Σ-object C is a collection of spaces {C[n]}n≥0 such that C[n] is equipped
with a right action by Σn. Thus, any operad is a Σ-object, but not conversely.

Given a Σ-object C, define a functor FC : Top→ Top by

FC(X) =
∐
n≥0

C[n] ×
Σn
Xn.

Thus each Σ-object produces a functor; likewise, each map of Σ-objects produces
a natural transformation of functors. It is sometimes helpful to think of FC as a
“power series” with coefficients C[n].

Let I be the Σ-object defined by

I[n] =

{
pt if n = 1,
? otherwise.

Then FI is the identity functor.
Suppose D is another Σ-object. What is FC(X)× FD(X)? We compute

FC(X)× FD(X) '

∐
m≥0

C[m] ×
Σm

Xm

×
∐
n≥0

D[n] ×
Σn
Xn


'

∐
m,n≥0

(C[m]×D[n]) ×
Σm×Σn

(Xm ×Xn)

'
∐
d≥0

( ∐
m+n=d

C[m]×D[n] ×
Σm×Σn

Σd

)
×
Σd
Xd.

Thus, if we define a new Σ-object C ⊗D by

(C ⊗D)[d] =
∐

m+n=d

C[m]×D[n] ×
Σm×Σn

Σd,

then we see that FC(X) × FD(X) ' FC⊗D(X). Note that this implies that
FC(X)×n ' FC⊗n(X).

We can produce other formulas of the same type. Thus, if K is a space, define
a Σ-object K×C by (K×C)[n] = K×C[n]. Then K×FC(X) ' FK×C(X). Also,
if Cα is a diagram of Σ-objects, then colim (FCα(X)) ' FcolimCα(X).

The formula we are really after is the one for the composition of functors
FC(FD(X)). We compute

FC(FD(X)) '
∐
m≥0

C[m] ×
Σm

FD(X)m

'
∐
m≥0

C[m] ×
Σm

FD⊗m(X)

' F�`
m≥0 C[m] ×

Σm
D⊗m

�(X).
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Thus, if we set
C ◦D =

∐
m≥0

C[m] ×
Σm

D⊗m

then we have FC ◦ FD ' FC◦D. In full, this means

(C ◦D)[d] =
∐
m≥0

C[m] ×
Σm

( ∐
i1+···+im=d

D[i1]× · · · ×D[im] ×
Σi1×···×Σim

Σd

)
.

This makes the category of Σ-objects into a monoidal category, where the monoidal
structure corresponds to composition of functors.

11.4. Operads are monoids. Since the category of Σ-object is a monoidal
category via the “◦” product (but not symmetric monoidal, since C ◦D 6= D ◦C),
we can think about monoids in this category. A monoid is just a Σ-object C
equipped with maps η : I → C and µ : C ◦C → C such that the following diagrams
commute.

C ◦ C
µ

��

C ◦ C ◦ C
µ◦C //

C◦µ
��

C ◦ C
µ

��
C ◦ I

C◦η
::uuuuuuuuu
C I ◦ C

η◦C
ddI I I I I I I I I

C ◦ C
µ // C

Proposition 11.5. The category of operads is equivalent to the category of
Σ-object-monoids.

Proof. Suppose C is a Σ-object-monoid. Then the map η : I → C is just the
choice of a distinguished point in C[1], and the multiplication map µ : C ◦ C → C
amounts to choosing a collection of maps

C[m]× C[i1]× · · · × C[im]→ C[d]

which satisfy axioms (4) and (5) for an operad. The three remaining axioms (1),
(2), and (3) follow from the fact that C is a monoid. The converse argument is
similar.

A Σ-object monoid C defines a functor FC : Top→ Top which is a triple. Thus,
given an operad C, we can speak of algebras over the triple FC .

Proposition 11.6. The category of C-algebras is equivalent to the category of
FC-algebras.

This implies in particular that for a space X , FC(X) =
∐
C[m] ×

Σm
Xn is a

C-algebra. In fact, it is the free C-algebra on X , with the property that

C- alg(FC(X), Y ) ' map(X,Y ).

For example, if A is the associative operad,

FA(X) '
∐
n≥0

Xn.

12. Algebra spectra

We discuss spectra which are also algebras over an operad.
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12.1. Operads over the linear isometries operad. We want to have op-
erads acting on spectra, rather than on spaces. First, note that there’s a natural
inclusion Σn ⊂ L(Un,Un). Let X be a spectrum over U . For each σ ∈ Σn there’s
a natural isomorphism X(n) ' σ∗X(n) as follows. Recall that

(X(n)
pre )V1×···Vn = XV1 ∧ · · · ∧XVn .

This means that
(σ∗X(n))pre

V1×···Vn ' XVσ1 ∧ · · · ∧XVσn .

There’s a natural map (X(n))pre → (σ∗X(n))pre induced by permuting the factors,
which is an isomorphism. This specifies the desired isomorphism of spectra.

The space L[n] gets a right Σn-action by permuting the source universe Un.
Suppose T → L[n] is a map of Σn-spaces. Then T oX(n) has a natural Σn-action,
where σ ∈ Σn acts via the composite of isomorphisms

T oX(n) ' T o σ∗X
(n) ' Tσ oX(n) ' T oX(n),

where Tσ denotes the space over L[n] defined by the composite map T → L[n] σ−→
L[n], and the right-hand map in the sequence is induced by the isomorphism Tσ→
T of spaces over L[n].

By a Σ-object over the linear isometries operad, I mean a map C → L
of Σ-objects. For X ∈ SU let FC(X) denote the spectrum

FC(X) =
∨
n≥0

C[n] o
Σn
X(n).

Thus FC : SU → SU is a functor. (Note: C[0]oX(0) is defined to be Σ∞C[0]+.)
Given an operad over the linear isometries operad, i.e., an operad map

C → L, the functor FC is a triple on SU , and we can speak of the category of
algebras over C.

One example of an operad over L is the endomorphism operad of X . Define
the endomorphism “operad” of a spectrum X to be an operad over L, by

EX [n] = S(X(n), X)→ L[n].

Then one can show that a C-algebra structure on X is precisely the same as a map
of operads C → EX making the diagram

C

��?
??

???
??

// EX

~~} } }
} } }
} }

L
commute.

The main examples of operads we’ll need are A∞-operads. An A∞ operad A is
one for which the operad π0A of path components, defined by (π0A)[n] = π0A[n],
is isomorphic to the associative operad, and each component of A[n] is contractible.
We call a spectrum which is an algebra over such an operad an A∞-ring spectrum.

For example, there is an operad with A[n] = L[n]×Σn which is an operad over
the linear isometries operad; it induces a functor

FA(X) '
∨
n≥0

L[n]oX(n).
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In [6] the authors use this operad A to define their notion of A∞-ring spectrum. It
will be necessary for us to use a different A∞-operad which has technical properties
we will need. As will be noted below, this is not a major problem.

Note that if X is a spectrum, then FC(X) naturally is a C-algebra, and is in
fact the free C-algebra on X , I’ll denote the free C-algebra by C(X). If Y is a
C-algebra, I write UY for its underlying spectrum.

12.2. Properties of C-algebra spectra. The category of C-algebras has
properties very much like those of the category of spectra SU . I’ll summarize
them.

1. C- alg is a topological category. That is, for every two C-algebras X and Y
the set of C-algebra maps C- alg(X,Y ) ⊂ SU(X,Y ) can be topologized as
a subspace of the space of spectrum maps.

2. The category of C-algebras has all small limits and colimits. Colimits of
C-algebras can be quite complicated. But note that limits are easy. For
example, if X and Y are C-algebras, and UX and UY denote the underlying
spectra of X and Y , then UX × UY admits a natural C-algebra structure
given by

FC(UX × UY )→ FCUX × FCUY → UX × UY.
This is the product in the category of C-algebras. Thus, limits of C-algebras
are computed on the underlying spectrum.

3. Given an unpointed space T and C-algebras X and Y , there are construc-
tions T ⊗

C
X and Y T , with the property that

C- alg(T ⊗
C
X,Y ) ' map

(
T,C- alg(X,Y )

)
' C- alg(X,Y T ).

Furthermore, U(Y T ) ' (UY )T . (But note that U(T ⊗
C
X) 6' T ⊗ UX!) Let

E be a C-algebra. Then π∗(UE)T = π∗U(ET ) ' E−∗T . Thus, if E is an
A∞-ring spectrum, then ET is an A∞-ring spectrum whose homotopy is the
cohomology of T .

4. The category of C-algebra spectra is a topological closed model category
(this is non-trivial to prove). The weak equivalences and fibrations are
taken to be those maps which are weak equivalences or fibrations on the
underlying spectra.

Some of these results appear in EKMM [6]. The final result on the model category
structure of C-algebras represents work of Hopkins. (EKMM prove the model
category structure for certain special operads C, but not the general case.)

We note one more result, also due to Hopkins: the homotopy category of C-
algebra spectra depends (up to equivalence) only on the weak homotopy type of the
operad C. In particular, this means that all A∞-operads give the same homotopy
category of algebra spectra. Thus, we are always free to replace a given A∞ operad
A with an A′ which is technically convenient for us.

13. Simplicial spectra

Let ∆ denote the category having as objects the finite ordered sets [n] =
{0, 1, . . . , n}, and as morphisms those set maps f : [m] → [n] for which i ≤ j
implies f(i) ≤ f(j). This category has a representation in Top which is easier to
picture: there’s a functor ∆: ∆→ Top which sends [n] to the Euclidean n-simplex
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∆n which has vertices labelled v0, v1, . . . , vn, and which sends f : [m]→ [n] to the
affine map which sends vi to vf(i).

A simplicial object in a category C is a functor X• : ∆op → C, and we call
the category of such sC. We define a realization functor |−| : sSU → SU as a
quotient ∐

n≥0

∆n ⊗Xn/ ∼ .

More precisely, it is the coequalizer of∐
[m]→[n]∈∆

∆m ⊗Xn �

∐
[d]∈∆

∆d ⊗Xd,

in which the summand corresponding to δ : [m] → [n] ∈ ∆ is mapped by the top
arrow to δ ⊗ Xn, and by the bottom arrow to ∆m ⊗ δ. Geometric realization is
characterized by the fact that it is the left adjoint to a functor SU → sSU sending
Y to [n] 7→ Y ∆n .

An augmented simplicial object is a simplicial object X• together with a
map ε : X0 → Y such that the two maps X1 � X0 → Y are the same. Thus,
if X• → Y is an augmented simplicial spectrum, then there’s an induced map
|X•| → Y .

13.1. Facts about geometric realizations of simplicial spectra. We
need the following facts [6].

1. If X• ∈ sSU and Y• ∈ sSU ′, then you can form a simplicial spectrum X•∧Y•
in sS(U × U ′), defined by [n] 7→ Xn ∧ Yn. The crucial fact is that there’s a
natural isomorphism of spectra

|X• ∧ Y•| ' |X•| ∧ |Y•|.
2. If T → L(U ,U ′) and X• ∈ sSU , then there’s a natural isomorphism

|T oX•| ' T o |X•|.
3. Geometric realization commutes with colimits.
So if C → L is a Σ-object over L, then there’s a natural isomorphism

FC |X•| ' |FC(X•)|.
Now suppose X• is a simplicial C-algebra for some operad C, i.e., a functor

X• : ∆op → C- alg. Let UX• denote the underlying simplicial spectrum. Then we
can make |UX•| into a C-algebra, by a map

FC |UX•| ' |FCUX•| → |UX•|.
So the geometric realization of a simplicial C-algebra is again a simplicial C-algebra.

13.2. Resolutions of a C-algebra. Given a C-algebra X , let CX denote the
free C-algebra on the underlying spectrum of X , so UCX '

∨
n≥0C[n] o

Σn
X(n).

Then we get an augmented simplicial object

X ← CX � CCX · · ·
which I’ll denote by C•+1X . (By abuse of notation I omit the forget functor U .)

We need a model category fact: for good (i.e., cofibrant) choices of X and C,
the natural map |C•+1X | → X is a weak equivalence of C-algebras, and |C•+1X | is
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itself a cofibrant C-algebra, and that C•+1X is “Reedy cofibrant” in the category
of simplicial C-algebras. This means in particular that

C- alg(X,E)→ C- alg(|C•+1X |, E)

is a weak equivalence of spaces. We will compute A∞ maps between A∞-ring
spectra using a spectral sequence based on this resolution, using an A∞-operad C.

Remark 13.3. It is important that we be able to produce a Reedy cofibrant
resolution, as we will see below. In order to produce such it is convenient to have
an operad C for which a cofibrant C-algebra X has an underlying spectrum UX
which is cofibrant as a spectrum. It turns out that this will be the case when C is
a cofibrant operad ; these will be discussed in Section 22.2. Thus, we will assume
henceforth that C is a cofibrant A∞-operad.

The proof that a cofibrant operad suffices is quite simple, so we sketch it here
(using notions from Section 22.2). Let Y be a cofibrant C-algebra over a cofibrant
operad C. It will suffice to can produce a C-algebra X for which UX is cofibrant as
a spectrum together with a trivial fibration p : X → Y of C-algebras, for then the
theory of model categories tells us that p admits a section, and so UY is a retract
of the cofibrant spectrum UX and thus cofibrant.

We produce such an X by means of a dirty trick. Start with a trivial fibration
of spectra p : X → UY in which X is a cofibrant spectrum. We need to put a
C-algebra structure on X so that p becomes a map of C-algebras. Consider the
diagram

{S(X(n), X)×S(X(n),Y ) S(Y (n), Y )} //

f

��

{S(X(n), X)}

g

��
C //

55

{S(Y (n), Y )} // {S(X(n), Y )}

The map g is bunch of trivial fibrations of spaces (one for each n ≥ 0), because
X(n) is a cofibrant spectrum and p is a trivial fibration of spectra. One can show
that the pull-back f is actually a map between operads; since f is a trivial fibration
space-wise, it is a trivial fibration of operads, and the cofibrancy property of C
implies that the dotted arrow exists as a map of operads. You can check that such
a dotted arrow gives precisely a C-algebra structure on X making p into a map of
C-algebras, as desired!

14. Homotopy spectral sequence

We describe the Bousfield-Kan homotopy spectral sequence of a pointed cosim-
plicial space, and the Bousfield obstruction theory for an unpointed cosimplicial
space.

14.1. Spectral sequence. A functor ∆→ C is called a cosimplicial object
in C. Thus

[n] 7→ Y n = C- alg(Cn+1X,E)
is a cosimplicial space Y •.

If X• is a simplicial object in some category, there is a “skeletal” filtration

X0 ' |X•|0 → |X•|1 → |X•|2 → · · · → |X•|
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where |X•|k is a quotient of
∐

0≤n≤k
∆n ⊗Xn. This gives a tower

C- alg(|X•|0, E)← C- alg(|X•|1, E)← · · · ← C- alg(|X•|, E)

of spaces. IfX• is “Reedy cofibrant”, then the induced tower is a tower of fibrations.
The spaces in the tower, called the Tot-tower, can be derived directly from the

cosimplicial space Y •. The total space Tot(Y •) is a subspace of
∏
n≥0 map(∆n, Y

n).
The kth approximation to the total space Totk(Y •) is the corresponding subspace
of
∏

0≤n≤k map(∆n, Y
n). One has

C- alg(|C•+1|k, E) ' Totk Y •.

(The Reedy cofibrancy condition on X• is the exact condition needed for the cosim-
plicial space Y • to be fibrant in the sense of Bousfield and Kan [3].)

Suppose we have chosen a C-algebra map f : X → E. This gives us base-points
Cn+1X → X → E in Y n, and a base-point in TotY •. The Bousfield-Kan spectral
sequence of a pointed cosimplicial space [3] is a second quadrant spectral sequence
“converging” to π∗(TotY •, f), where

Es,t2 = πsπt(Y •, f) =⇒ πt−s(TotY •, f).

There are differentials
dr : Es,tr → Es+r,t+r−1

r .

Some comment on the E2-term is appropriate. E∗,t2 is the “cohomotopy” of the
cosimplicial object

πtY
0 //

// πtY
1 //

//
//

oo πtY
2

//
//
//
//

oo
oo · · ·oo

oo
oo

where homotopy groups are taken at the base-point determined by f . If t ≥ 2,
then the cohomotopy of the cosimplicial object is just the cohomology of the corre-
sponding co-chain complex. The same also holds for t = 1 if all Y s are look spaces.
The “corner” E0,0

2 is only a pointed set, defined as the equalizer

E0,0
2 = Ker(π0Y

0
� π0Y

1).

14.2. Obstruction theory. The above spectral sequence can be defined once
we have chosen a point in TotY •. But what if we don’t know whether such a point
exists (this is one of the things we want to prove). There is an obstruction theory,
due to Bousfield [2], which lets us solve this problem.

First, suppose we choose a point y0 ∈ Tot0 Y • ' Y 0. This defines a class
[y0] ∈ π0Y

0, which we can think of as E0,0
1 . We can lift y0 to Tot1 Y • if and only

if [y0] is in the equalizer of π0Y
0 → π0Y

0. That is, y0 lifts only if the class [y0]
“survives” to E0,0

2 .
The next step is to lift to Tot2 Y •. The problem here involves extending a map

from ∂∆2 → Y 2 to all of ∆2; it turns out that if a point y0 ∈ Tot0 Y • can be
lifted to Tot1 Y •, then the obstruction to lifting y0 to Tot2 Y • lies in E2,1

2 (at least
if all the π1Y

s act trivially on πtY
s, so that this group is well defined; there is a

description of this obstruction even when this is not true, but then the obstruction
is just a relation, rather than a map).

This process continues; to lift to Tot3 Y • we have to show that an obstruction
in E3,2

3 vanishes. The result we need is
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Theorem 14.3 (Bousfield [2, 6.1]). If Y • is a cosimplicial space, and given a
vertex y0 ∈ Y 0 such that [y0] ∈ Ker(π0Y

0
� π0Y

1), and if

Es,s−1
2 = 0

for s ≥ 2, then y0 lifts to TotY •.

14.4. Computing spaces of maps of A∞ algebras. Let E and F be A∞-
ring spectra (over our chosen A∞-operad C), such that the underlying spectra of
E and F are equivalent to Ek1,Γ1 and Ek2,Γ2 respectively. Suppose furthermore
that F is cofibrant as a C-algebra spectrum. Then we can construct a simplicial
resolution of F , and thereby get an obstruction theory and potentially a spectral
sequence computing the homotopy of C- alg(F,E).

Theorem 14.5. In the above situation
(1a)

E0,0
2 ' HomE∗- alg(E∗F,E∗),

(1b)
Es,t2 ' DersE∗- alg(E∗F,E∗+t), for t− s ≥ −1, t > 0.

(2a)
HomE∗- alg(E∗F,E∗) ' FG

(
(k1,Γ1), (k2,Γ2)

)
,

(2b)
DersE∗- alg(E∗F,E∗+t) ' 0, for all s, t ≥ 0.

Proof. Part (1a) is proved in Section 16. Part (1b) is proved in Section 18.
Part (2a) is proved in Section 17. Part (2b) is proved in Sections 19, 20, and 21.

Corollary 14.6. The topological functor

ALT
∞ → FGop

is fully faithful (i.e., induces weak equivalence on mapping spaces for all objects of
ALT
∞ .)

Proof. Given objects E,F ∈ ALT
∞ which map to formal group laws (k1,Γ1)

and (k2,Γ2) respectively, we see by Theorem 14.3 and Theorem 14.5 that A∞(F,E)
is a homotopy discrete space with π0A∞(F,E) ' FG

(
(k1,Γ1), (k2,Γ2)

)
.

Part 3. Calculations

In the following sections we compute the obstruction groups and E2-term of
the spectral sequence described in Section 14. These calculations will also be used
in Section 23 when we construct A∞-structures.

15. Preliminary calculations

Let E and F be Landweber exact spectra. Then

E∗F ' E∗ ⊗
MU∗

MU∗MU ⊗
MU∗

F∗.

Proposition 15.1. For Landweber exact theories E∗ and F∗, the module E∗F
is flat over E∗.
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Proof. It suffices to show that E∗MU is flat as an MU∗ module. That is, we
must show that the functor

{MU∗-modules} −→ {E∗-modules}
defined by N 7→ E∗MU ⊗

MU∗
N is exact. But this functor factors

{MU∗-modules} −→ {MU∗MU -comodules} −→ {E∗-modules},
sending

N 7→MU∗MU ⊗
MU∗

N 7→ E∗ ⊗
MU∗

MU∗MU ⊗
MU∗

N ' E∗MU ⊗
MU∗

N,

where the left-hand functor is exact since MU∗MU is a flat module over MU∗, and
the right-hand functor is exact by Landweber’s theorem.

15.2. Universal coefficient and Künneth theorems. Let E be a ring-
spectrum, and X and Y arbitrary spectra. One would like to have a Künneth
spectral sequence

TorE∗s (E∗X,E∗+tY ) =⇒ Es+t(X ∧ Y )

and a coefficient spectral sequence

ExtsE∗(E∗X,E∗+t) =⇒ Et−sX.

This doesn’t happen in general, but it does happen in many cases for good spectra
E. Adams [1, part 3] gave a general criterion for the existence of such spectral
sequences. We need Adams’ criterion in one case; it is a nice observation of Hopkins.

Proposition 15.3. If E is a Landweber exact theory, then there are Künneth
and universal coefficient spectral sequences as described above.

Proof. Adams constructs the spectral sequences for E using the fact that for
any arbitrary spectrum X there exists a map P → X of spectra such that

(a) E∗P → E∗X is surjective,
(b) E∗P is projective over E∗,
(c) E∗(P ∧ Y ) ' E∗P ⊗

E∗
E∗Y (for the Künneth theorem), and

(d) E∗P ' HomE∗(E∗P,E∗) (for the coefficient theorem).
In the case when E = MU , Adams shows that it suffices to take P to be an
appropriate wedge of Spanier-Whitehead duals of Thom spectra of finite complex
Grassmanians.

If P → X is the map Adams constructed for MU , and E is a Landweber exact
theory, then properties (a), (b), (c), and (d) hold for E: (a) and (b) follow because
tensoring preserves surjections and projectives, (c) is trivial, and (d) follows because
P is a wedge of finite spectra T , and because E∗T ' E∗DT is a free module over E∗
by computation, sinceDT is a Thom spectrum of a finite complex Grassmanian.

Corollary 15.4. If E and Fi (i = 1, . . . , n) are Landweber exact spectra, and
F ' F1 ∧ · · · ∧ Fn, then E∗F is flat over E∗, and

E∗F ' E∗F1 ⊗
E∗
· · · ⊗

E∗
E∗Fn.

Proposition 15.5. If E = Ek1,Γ1 and F = Ek2,Γ2 , then the evaluation map

E∗F → HomE∗(E∗F,E∗)

is an isomorphism.
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Proof. By the universal coefficient theorem, we only need to prove that the
Exts groups vanish for s > 0. This follows from Lemma 15.6.

Lemma 15.6. Let M be a flat E∗-module. Then

ExtsE∗(M,E∗) ' 0

for s > 0.

Proof. Let m = (p, u1, . . . , un−1) denote the maximal ideal of E∗. We first
prove that ExtsE∗(M,E∗/md) ' 0 for each d.

For d = 1 we have

ExtsE∗(M,E∗/m) ' ExtsE∗/m(M ⊗
E∗
E∗/m, E∗/m)

by flat base change. Since E∗/m ' k[u±] is injective as a graded module over itself,
these Ext groups are 0 for s > 0.

Note that md/md+1 is a finite k[u±]-vector space, so ExtsE∗(M,md/md+1) ' 0
for s > 0. Thus for d > 1, the exact sequence

0→ md/md+1 → E∗/m
d+1 → E∗/m

d → 0

shows that ExtsE∗(M,E∗/md+1) = 0 for s > 0, as well as showing that the map
HomE∗(M,E∗/md+1)→ HomE∗(M,E∗/md) is surjective.

Finally, use the exact sequence

0→ E∗ →
∏

E∗/m
d 1−S−−−→

∏
E∗/m

d → 0

in ExtsE∗(M,−) to prove the lemma. (Here S denotes the “shift” map.)

Remark 15.7. Note that Lemma 15.6 and hence Proposition 15.5 (and, as we
shall see, Lemma 18.4 and Corollary 19.3) can fail for an arbitrary Landweber exact
theory E∗. For example, if E = E(n), the Johnson-Wilson theory with E(n)∗ '
Z(p)[v1, . . . , vn−1, v

±
n ], then it is not the case that Ext1

E∗(E∗E,E∗) vanishes, even
though E∗E is flat over E∗.

16. Identification of E0,0
2

In this section we show that

E0,0
2 ' HomE∗- alg(E∗F,E∗),

proving part (1a) of Theorem 14.5
We need to compute the equalizer of the pair of maps

π0C- alg(CF,E)� π0C- alg(C2F,E).

First note that for any C-algebra Y there is a natural map

π0C- alg(Y,E) −→ HomE∗- alg(E∗Y,E∗).

This map sends a C-algebra map f : Y → E to the map

E∗Y
E∗f−−→ E∗E → E∗.

Note that E∗Y is in fact an associative E∗ algebra, since the A∞-structure on Y
induces maps E∗Y ⊗

E∗
E∗Y → E∗(Y ∧ Y )→ E∗Y .
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Now suppose Y = CX for some spectrum X . Given an E∗ module M , let TM
denote the E∗ tensor algebra on M ; i.e.,

TM =
⊕
n≥0

M⊗n ' E∗ ⊕M ⊕ (M ⊗
E∗
M)⊕ · · · .

At the level of the homotopy category of spectra,

Y = CX '
∨
n≥0

X(n) ' S0 ∨X ∨X(2) ∨ · · · .

The inclusion X → CX induces a map E∗X → E∗CX of E∗-modules, and hence
a map αX : T (E∗X)→ E∗CX of algebras.

Lemma 16.1. If E∗X is flat over E∗, then αX is an isomorphism.

Proof. This is clear from Corollary 15.4.

In particular Lemma 16.1 holds for X = CnF .
Now consider the commutative diagram

π0C- alg(CX,E) //

��

HomE∗- alg(E∗CX,E∗)

��
[X,E] // HomE∗(E∗X,E∗)

The left-hand vertical arrow is an isomorphism, since CX is the freeC-algebra onX .
If E∗X is flat over E∗, the bottom and right-hand vertical arrows are isomorphisms
by Proposition 15.5 and Lemma 16.1; hence the top arrow is also an isomorphism.
Thus, we have reduced our problem to that of computing the equalizer of the pair
of maps

HomE∗- alg (T (E∗F ), E∗)� HomE∗- alg
(
T 2(E∗F ), E∗

)
.

But this is precisely just the equalizer of

HomE∗(E∗F,E∗)� HomE∗ (T (E∗F ), E∗)

where the top arrow sends f : E∗F → E∗ to the composite

T (E∗F )→ E∗F
f−→ E∗

and the bottom arrow sends it to the composite

T (E∗F )
T (f)−−−→ T (E∗)→ E∗.

Thus
E0,0

2 = HomE∗- alg(E∗F,E∗).

17. Computation of HomE∗- alg(E∗F,E∗)

In this section we show that

HomE∗- alg(E∗F,E∗) ' FG
(
(k1,Γ1), (k2,Γ2)

)
,

which proves part (2a) of Theorem 14.5.
Let E = Ek1,Γ1 , F = Ek2,Γ2 . There are universal deformations (Ge, ie) of the

formal groups (ke,Γe), where Ge is a degree 0 formal group law over the ring

E(ke,Γe) = π0Eke,Γe ' W k[[u1 , . . . , un−1]].
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Recall from Section 6 that chosen invertible elements uGe ∈ π2Eke,Γe allow us to
produce degree −2-formal group laws Ḡe.

We need to understand the set

HomE∗- alg(E∗F,B∗).

Recall from Section 15 that

E∗F ' E∗ ⊗
MU∗

MU∗MU ⊗
MU∗

F∗.

Thus by Theorem 6.2 a map E∗F → B∗ of commutative graded rings corresponds
precisely to the following data: a map φ : E∗ → B∗, a map ψ : F∗ → B∗, and a
strict isomorphism ḡ : ψ∗Ḡ2 → φ∗Ḡ1 of formal group laws. Represent such data by
the triple (φ, ḡ, ψ).

Suppose we fix once and for all an E∗-algebra structure on B∗, in other words,
a map φ. Then elements of the set HomE∗- alg(E∗F,B∗) correspond to data (ψ, ḡ).
That is,

HomE∗- alg(E∗F,B∗) ' {(ψ : F∗ → B∗, ḡ : ψ∗Ḡ2
∼−→ φ∗Ḡ1)}.

Write ψ0 : F0 → B0 for the restriction of ψ to degree 0. Since F∗ ' F0[u±G2
],

the set of homomorphisms ψ : F∗ → B∗ corresponds bijectively to the set of pairs
(ψ0, ψ(uG2)) where ψ0 is a map F0 → B0 and ψ(uG2) is an invertible element in
B2.

Recall from Section 6 that the strict isomorphism ḡ : ψ∗Ḡ2 → φ∗Ḡ1 of degree
−2 formal group laws and the elements φ(uG1) and ψ(uG2) induce an isomorphism
g : ψ∗0G2 → φ∗0G1 of degree 0 formal group laws, not necessarily strict, by g(x) =
φ(uG1)ḡ(ψ(uG2)−1x). Note that if ḡ(x) = x+ a2x

2 + a3x
3 + · · · , then

g(x) =
(
φ(uG1)ψ(uG2)−1)x+ a2

(
φ(uG1)ψ(uG2)−2)x2 + · · · .

Thus, given g(x) and φ(uG1), we can recover ψ(uG2) (since φ(uG1) = g′(0)ψ(uG2)),
and hence recover ḡ(x).

Putting this together, we see that the data (ψ, ḡ) corresponds bijectively to
data (ψ0, g). Thus, we have proved

Proposition 17.1. There is an isomorphism of sets

HomE∗- alg(E∗F,B∗) ' {(ψ0 : F0 → B0, g : ψ∗G2
∼−→ φ∗G1)}.

Remark 17.2. There is another way to describe this set. It is easy to see that
E∗F ' E0F [uG1 ], so that

HomE∗- alg(E∗F,B∗) ' HomE0- alg(E0F,B0).

Thus, a map from E0F to a ring B corresponds precisely to: a map φ : E0 → B, a
map ψ : F0 → B, and an isomorphism g : ψ∗G2

∼−→ φ∗G1 (not necessarily strict).
Equivalently, there is a square diagram of groupoids

HomRing(E0F,B) //

��

HomRing(E0, B)

��
HomRing(F0, B) // fgl(B)

commuting up to a natural isomorphism, which is a homotopy pull-back square.
(A set S is regarded as a groupoid having as objects the set S, and as maps only
identity maps.) This way of viewing things will come in handy in Section 21.
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Suppose now that B = B0 is a complete local ring, and that B is a continuous
E0-algebra, i.e., the map φ0 : E0 → B is a continuous map between complete local
rings. The continuity hypothesis is equivalent to requiring that φ0(mE) ⊂ mB,
where mE = (p, u1, . . . , un−1) ⊂ E0 is the maximal ideal. Given some E0-algebra
map E0F → B, I would like to know that the induced map F0 → E0F → B
between complete rings is continuous. This is ensured by the following well-known
lemma.

Lemma 17.3. Let mE ⊂ E0 and mF ⊂ F0 be the maximal ideals of these rings.
Then mEE0F = mFE0F as ideals of E0F .

Proof. The ideal mE is generated by the coefficients of the terms of the p-
series [p]G1(x) which are of degree less than pn. Likewise, the ideal mF is generated
by the coefficients of the terms of the p-series [p]G2(x) which are of degree less than
pn. There is an isomorphism of formal group laws g : G1 → G2 defined over the
ring E0F , and hence an equation g◦ [p]G1 = [p]G2 ◦g. The lemma follows easily.

We have fixed a map φ0 : E0 → B and hence a formal group law φ∗G1 over B
which is a deformation of (k1,Γ1) to B. Maps ψ : F0 → B classify ?-isomorphism
classes of deformations of (k2,Γ2) to B. Consider the diagram of groupoids

P //

��

{φ∗G1}

��
DefΓ2(B) //

��

fgl(B)

��∐
j : k2→B/mB

{i∗Γ2} // fgl(B/mB)

in which both squares are homotopy-pullback squares of groupoids. We get two
descriptions of P from this diagram. The first comes from the top square: since
DefΓ2(B) is homotopy discrete and π0 DefΓ2(B) ' Homcts

Ring(F0, B), we see that P
is equivalent to a disjoint union of a bunch of loop-spaces of fgl(B), and in fact P
is homotopy discrete with

π0P '
∐

ψ : F0
cts−−→B

Homfgl(B)(φ∗G1, ψ
∗G2).

Thus, P ' HomE∗- alg(E∗F,B∗) by Proposition 17.1 and Lemma 17.3.
The second description comes from the big rectangle. This also describes P as

a union of loop-spaces, and shows that P is homotopy discrete with

π0P '
∐

j : k2→B/mB

Homfgl(B/mB)(i∗Γ1, j
∗Γ2),

where i : k1 → B/mB is the map induced by φ0 : E0 → B modulo maximal ideals.
Thus we conclude

HomE∗- alg(E∗F,B∗) ' P ' FG
(
(B/mB, i

∗Γ1), (k2,Γ2)
)
.

If we let B∗ = E∗ with φ = id, then we get an isomorphism

HomE∗- alg(E∗F,E∗) ' FG
(
(k1,Γ), (k2,Γ)

)
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as desired.

Remark 17.4. Note that if we let B∗ = E∗/md for any d ≥ 1 we still get an
isomorphism

HomE∗- alg(E∗F,E∗/md) ' FG
(
(k1,Γ1), (k2,Γ2)

)
.

In particular, this holds for d = 1. If we restrict to degree 0 and then tensor down
via the map E0 → E0/m = k1, we see that

Homk1- alg(E0F/m, k1) ' FG
(
(k1,Γ1), (k2,Γ2)

)
where m denotes the ideal generated by p, u1, . . . , un−1 ∈ E0 ⊂ E0F . This means
one can give a description of E0F/m in many cases using formal group law theory.

For example, if Γ1 = Γ2 = Γ is the Honda formal group law, so that E =
F = En, then FG

(
(Fpn ,Γ), (Fpn ,Γ)

)
is isomorphic to the set of pairs (σ, f) where

σ : Fpn → Fpn is a Galois automorphism, and f(x) = e0x+
Γ
e1x

p +
Γ
e2x

p2
+
Γ
· · · is a

power series with coefficients ei ∈ Fpn , with e0 6= 0 (see [13, App. 2]). This shows
that

E0F/m ' (Fpn ⊗
Fp

Fpn )[e0, e1, e2, . . . ]/(e
pn−1
0 − 1, ep

n

1 − e1, e
pn

2 − e2, . . . ).

(Note that a map of Fpn -algebras Fpn ⊗
Fp

Fpn → Fpn corresponds precisely to a map

of rings σ : Fpn → Fpn .)

18. Derivations of associative algebras

In this section we define the derived functors of associative algebra derivations
and show part (1b) of Theorem 14.5.

18.1. A complex for the E2-term. Suppose Y is a C-algebra, and choose
a map f : Y → E. The set πt(C- alg(Y,E), f) is the same as homotopy classes of
maps St → C- alg(Y,E) which send the base-point of the sphere to f , and where
homotopies are base-point preserving.

pt
f //

��

C- alg(Y,E)

St

g
99sssss

By adjunction, these are the same as homotopy classes of lifts in the diagram

ES
t

��
Y

f //

ĝ
==|

|
|

|
E

of C-algebras, where homotopies are ones which are fiberwise over f . Recall from
Section 12.2 that ES

t

is a C-algebra whose underlying spectrum is isomorphic to
F (Σ∞St+, E) ' E ∨ Σ−tE. Thus π∗ES

t ' E−∗St ' E∗[ε]/ε2, with |ε| = −t. The
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spectrum ES
t

is naturally a ring spectrum over E. Applying E∗(−) everywhere
and using the ring structure of E∗ gives us a diagram of algebras

E∗E
St

��

// E∗[ε]/ε2

��
E∗Y

E∗f //

E∗ĝ
;;wwwww
E∗E // E∗

and thus we get a map

πt (C- alg(Y,E), f)→ Hom(E∗- alg↓E∗)(E∗Y,E∗[εt]/ε
2
t ),

where the right hand side denotes maps in the category of E∗-algebras augmented
over E∗. Note that E∗Y is augmented over E∗, via the composite E∗Y → E∗E →
E∗; this augmentation itself depends on the choice of f : Y → E.

Now suppose Y = CX where E∗X is a flat E∗-module. Then using the com-
mutative diagram

π0C- alg(CX,ES
t

) //

��

HomE∗- alg
(
T (E∗X), E∗[εt]/ε2t

)
��

[X,E ∨ Σ−tE] // HomE∗(E∗X,E∗ ⊕E∗+t)
and an argument similar to that of Section 16 one shows that the top horizontal
map is a bijection. Thus, we have

Es,t2 ' Hs
[
Hom(E∗- alg↓E∗)

(
T •+1(E∗F ), E∗[εt]/ε2t

)]
,

for t > 0 and t− s ≥ −1.

18.2. Associative algebra derivations. Let A be a commutative ring, and
suppose R is an associative A-algebra. Let M be an R-bimodule relative to A; that
is, M is a module over the ring Re = R ⊗

A
Rop. Then form a ring R ⊕M with

multiplication given by

(r,m) · (r′,m′) = (rr′, rm′ +mr′)

for r, r′ ∈ R, m,m′ ∈ M . The inclusion map η : R → R ⊕M and the projection
map π : R ⊕M → R are algebra maps, and M ⊂ R ⊕M is an ideal such that
M2 = 0.

Consider sections s : R → R ⊕M of the projection π. Such an s = (id, D)
where D : R→M is an A-module map such that

D(rr′) = r(Dr′) + (Dr)r′

for r, r′ ∈ R. Such a map D : R → M is called an A-derivation of R into M .
The set of A-derivations is written DerA(R,M), whence

Hom(A- alg↓R)(R,R⊕M) ' DerA(R,M).

More generally, let φ : R → S be a map of associative A-algebras, and let M
be an S-bimodule. The map φ makes M into an R-bimodule by restriction. Hence

Hom(A- alg↓S)(R,S ⊕M) ' DerA(R,M).
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Note that DerA(R,M) is naturally an A-module. If A = S = E∗, R = E∗Y ,
and M = E∗+t, then this module is

DerE∗(E∗Y,E∗+t) ' Hom(E∗- alg↓E∗)(E∗Y,E∗[εt]/ε
2
t ).

Thus,
Es,t2 ' Hs

[
DerE∗

(
T •+1(E∗F ), E∗+t

)]
.

18.3. Derived functors of associative algebra derivations. Let sA- alg
denote the category of simplicial associative A-algebras. This has a model category
structure as follows. The weak equivalences f : R• → S• are maps which induce
isomorphisms on homology of the associated chain-complexes. A cofibration f is
a retract of a free map. A free map f : R• → S• is a map which in each simplicial
degree is an inclusion

Rn → Sn ' Rn〈Xn〉,
where R〈X〉 denotes the algebra obtained from R by adjoining the elements of
the set X as free generators, and such that the the sets X• are closed under the
degeneracy operators of S•. (See Quillen [11].)

A cofibrant resolution of a simplicial algebra R• is a diagram A
i−→ P•

f−→
R•, where i is a cofibration, and f is a weak equivalence. There is a functorial
cofibrant resolution P• of R, given by Pn = Fn+1(R), where FB denotes the free
associative A-algebra on the underlying set of R. Another resolution is the complex
Qn = Tn+1(R). It is a cofibrant resolution if R is a projective A-module; this is
easy to see if R is a free A-module, since if X is a set of module generators of R,
then the set of monomials in X is a set of module generators of TR.

Given an associative A-algebra R over S, and an S-bimodule M , define

DersA(R,M) = Hs
[
DerA(P•,M)

]
,

the s-th derived functor of derivations from B to M , where P• → R is a
cofibrant resolution of R. The derived functors do not depend on the choice of
cofibrant resolution.

Our complex Tn+1(E∗F ) of E∗-algebras is not cofibrant, since E∗F is not
projective over E∗; nonetheless, we will show below that this complex computes
derived functors of derivations.

Suppose R = TN , where N is an A-module, and let M be an S-bimodule.
Then if P• → N is a free resolution of N by a simplicial A-module, then TP• is a
cofibrant resolution of R = TN . Then, since

DerA(TN,M) ' Hom(A- alg↓S)(TN, S ⊕M) ' HomA(N,M)

it is not hard to see that

DersA(R,M) ' ExtsA(N,M).

Thus, Lemma 15.6 gives

Lemma 18.4. If we take A = S = E∗, M = E∗+t, and R = TN where N is a
flat E∗-module, then

DersE∗(TN,E∗+t) = 0, s > 0.
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18.5. The E2-term is a derived functor. Suppose R• is a simplicial A-
algebra, augmented over S, and let M be an S-module Then there is a spectral
sequence of A-modules

Ep,q1 = DerpA(Rq,M) =⇒ Derp+qA (R•,M).

This spectral sequence is constructed by producing a double complex Pp,q of A-
algebras, in which each row P•,q → Rq is a cofibrant resolution of Rq, and so that
the diagonal is a cofibrant resolution of R•. Such a resolution can be constructed
by the functorial cofibrant resolution Pp,q = F p+1Rq.

Now letting A = S = E∗, M = E∗+t and Rq = T q+1(E∗F ) we see from
Lemma 18.4 applied to N = E∗F that the spectral sequence at the E1-term is

Ep,q1 = DerpE∗
(
T q+1(E∗F ), E∗+t

)
=

{
0 if p > 0,
DerE∗

(
T q+1(E∗F ), E∗+t

)
if p = 0.

Thus the spectral sequence is concentrated in a single column of the E1-term, and
collapses at E2. In fact, E0,∗

1 is precisely the cochain complex whose cohomology
we want to compute, and by the convergence of the spectral sequence, what it
computes is DersE∗(E∗F,E∗+t).

19. Change of ground ring

In this section we show that in order to prove that DersE∗(E∗F,E∗+t) vanishes,
it suffices to show that DersE0/m(E0F/m, Et/m) vanishes.

19.1. Associative algebra differentials. Given an A-algebraR, define IR/A
to be an R-bimodule equipped with a A-derivation d : R→ IR/A which induces an
isomorphism

DerA(R,M) ' HomRe(IR/A,M).
Such an object always exists: IR/A can be constructed as the cokernel of δ in

R⊗
A
R⊗

A
R⊗

A
R

δ−→ R⊗
A
R⊗

A
R

p−→ IR/A → 0

where
δ(a⊗ b⊗ c⊗ d) = ab⊗ c⊗ d− a⊗ bc⊗ d+ a⊗ b⊗ cd.

The universal derivation d : R → IR/A is given by d(r) = p(1⊗ r ⊗ 1). By the bar
complex, we see that IR/A is also the kernel of µ in

0→ IR/A → R⊗
A
R

µ−→ R.

We call IR/A the R-bimodule of associative algebra differentials of R.
Let R = TN be the tensor algebra on an A-module N . Then derivations

D : TN →M to some R-bimodule M correspond bijectively to maps

Hom(A- alg↓R)(TN,R⊕M) ' HomA(N,M),

and hence
DerA(TN,M) ' HomA(N,M).

Since ITN/A should be an R-bimodule, we see that

ITN/A ' TN ⊗
A
N ⊗

A
TN.

Note that this means that IR/A is a free R-bimodule when R is a free algebra.
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Suppose R is an associative A-algebra. Define

DR/A = IP•/A ⊗
P e•

Re

for some choice P• → R of cofibrant resolution of R. Thus DR/A is a complex of
projective R-bimodules, and

ExtsRe(DR/A,M) ' Hs
[
HomRe(IP•/A ⊗

P e•

Re,M)
]

' Hs
[
DerA(P•,M)

]
' DersA(R,M).

Here “Ext” really means some kind of “hyper-Ext”.
We therefore get a coefficient long exact sequence for derived functors of deriva-

tions.

Proposition 19.2. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence
of R-bimodules. Then there is a long exact sequence

0→ DerA(R,M ′)→ DerA(R,M)→ DerA(R,M ′′)→ Der1
A(R,M)→ · · · .

Corollary 19.3. If DersE∗(E∗F,E∗+t/m) = 0 for all s, then

DersE∗(E∗F,E∗+t) = 0

for all s.

Proof. The proof is similar to that of Lemma 15.6.

19.4. Change of ground ring. Suppose A → A′ is a map of commutative
rings. Then given an A-algebra R we get an induced A′-algebra R′ = R⊗

A
A′.

Proposition 19.5. If R is flat as an A-module, and M is an R′-bimodule,
then

DersA(R,M) ' DersA′(R
′,M).

Proof. Let P• → R be a cofibrant A-algebra resolution of R. Then P ′• =
P•⊗

A
A′ is a cofibrant A′-algebra, since A〈X〉⊗

A
A′ ' A′〈X〉 for a set X . Since P• is

also a complex of projective A-modules, it forms a projective A-module resolution
of R. Thus, if R is flat, P ′• is a cofibrant resolution of R′.

Using E∗ → E∗/m and the flatness of E∗F over E∗, we get

Corollary 19.6. There is an isomorphism

DersE∗(E∗F,E∗+t/m) ' DersE∗(E∗F/m, E∗+t/m).

Using E0/m→ E∗/m and the fact that E0/m is a field, we get

Corollary 19.7. There is an isomorphism

DersE∗(E∗F/m, E∗+t/m) ' DersE0/m(E0F/m, Et/m).
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20. Reduction to commutative algebras

20.1. Commutative algebra derivations. We now let B be a commutative
A-algebra, and let M be a B-module. Then B ⊕M can be given the structure of
an A-algebra augmented over B. The sections of this augmentation correspond to
(commutative) A-algebra derivations of B into M . A commutative algebra deriva-
tion is the same thing as an associative algebra derivation for which M is viewed
as a B-bimodule with the same B-module structure on both sides.

There are natural isomorphisms

DerA(B,M) ' HomBe(IB/A,M) ' HomB(IB/A ⊗
Be
B,M)

using the map Be = B ⊗
A
B → B. We call ΩB/A = IB/A ⊗

Be
B the B-module of

commutative algebra differentials on B; there is a universal derivation d : B →
ΩB/A. Because of the universal property of ΩB/A, we see that ΩB/A may also be
described as the free B-module on elements dx for x ∈ B, modulo the relations
da = 0 for a ∈ A and d(xy) = xdy + ydx. In particular, if B = A[X ] is a
polynomial algebra generated by a set X , then ΩB/A is a free B-module generated
by the set of symbols {dx | x ∈ X}.

The category of simplicial commutative algebras has a model category struc-
ture, in which a weak equivalence B• → B′• is a map which induces an isomor-
phism on the homology of the associated chain complex, and a cofibration is a
retract of a free map. A free map f : B• → B′• is a map which in each simplicial
degree is an inclusion

Bn → B′n ' Bn[Xn],
where B[X ] denotes the polynomial algebra over B generated by elements of X ,
and such that the sets X• are closed under degeneracy operators of B′•. (See
Quillen [11].)

Thus, we can define derived functors of commutative algebra derivations, called
André-Quillen cohomology, by

Hs
A(B,M) = Hs

[
DerA(Q•,M)

]
where Q• → B is a cofibrant resolution of B as a commutative algebra. (This is
Quillen’s construction of André-Quillen cohomology; see Quillen [12].)

If Q• → B is a cofibrant commutative algebra resolution of B, write LB/A =
ΩQ•/A ⊗

Q•
B. Then

Hs
A(B,M) ' Hs

[
HomB(LB/A,M)

]
.

20.2. Comparing associative and commutative derivations. Let’s fix a
commutative A-algebra B and a B-module M . Then let

ΛB/A ' DB/A ⊗
Be
B.

Thus, Λ−/A is a construction which produces a simplicial B-module from the com-
mutative A-algebra B. It has the property that

DersA(B,M) ' Hs
[
HomB(ΛB/A,M)

]
.

On the other hand, we have the gadget LB/A which is another simplicial B-module.
We want to show that if LB/A is acyclic (i.e., HsLB/A ≡ 0 for all s), then ΛB/A is
acyclic. In fact
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Proposition 20.3. If B is a commutative ring which is flat over A, then there
is a first quadrant spectral sequence

Hs

(
Λt+1
B (LB/A)

)
=⇒ Hs+tΛB/A.

(Here ΛdB denotes the dth exterior power functor; Λt+1
B LB/A is the simplicial

B-module obtained by applying the (t+ 1)st exterior power functor degree-wise to
LB/A.)

Corollary 20.4. Let A = E0/m = k1 and B = E0F/m. If LB/A is acyclic,
then ΛB/A is acyclic, whence

DersE0/m(E0F/m, Et) = 0.

Proof. Since LB/A is an acyclic simplicial module which is degree-wise pro-
jective, it has a simplicial contracting homotopy. Hence so does Λt+1

B LB/A, whence
the result follows by Proposition 20.3.

20.5. Construction of the spectral sequence. First, let Q• → B be a ver-
tical cofibrant resolution of B as a commutative algebra; without loss of generality
we can assume that each Qp is a polynomial algebra. Now, let Pp,• → Qp be a
horizontal functorial cofibrant resolution of Qp as an associative algebra. Hence,
we get a double complex P•,• of associative algebras; the diagonal of this double
complex is a cofibrant resolution of B as an associative algebra.

We apply the functor P 7→ IP/A ⊗
P e
B to each spot in the double complex.

The total homology of the resulting complex of B modules is precisely H∗(ΛB/A).
Taking horizontal homology in the complex we get

Ep,q1 = Hq(IPp,• ⊗
P ep,•

B) ' Hq(ΛQp/A ⊗
Qp
B).

Lemma 20.6. Given a flat commutative A-algebra Q there is a natural isomor-
phism

TorQ
e

q+1(Q,Q) ∼−→ Hq(ΛQ/A),
and a natural map

i : ΩQ/A
∼−→ H0ΛQ/A.

Lemma 20.6 is proved below.
Note that TorQ

e

∗ (Q,Q) has the structure of a graded commutative algebra.
This algebra structure arises from the fact that there are algebra maps Q→ Qe =
Q ⊗

A
Q → Q. Furthermore, if Q is a polynomial algebra, then TorQ

e

∗ (Q,Q) is an

exterior algebra generated by Tor1. Thus, in the case that Q is a polynomial algebra
over A, (whence Qe is a polynomial algebra over Q,) the natural map i extends in
a natural way to an isomorphism of algebras

Λ∗+1
B (ΩQ/A) ∼−→ TorQ

e

∗+1(Q,Q) ∼−→ H∗(ΛQ/A).

In particular,
Hq(ΛQp/A) ' Λq+1

Qp
(ΩQp/A)

whence
Ep,q1 ' Λq+1

Qp
(ΩQp/A) ⊗

Qp
B ' Λq+1

B (ΩQp/A ⊗
Qp
B).
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(This last follows because Λ∗Qp(ΩQp/A) is a projective Qp-module.) The right-hand
side of this equation is the pth degree of Λq+1

B LB/A, and thus Proposition 20.3
holds.

Proof of Lemma 20.6. Recall that ΛQ/A = IP•/A ⊗
P e•

Q where P• → Q is a

cofibrant resolution of Q by associative algebras, and that there are exact sequences

0 // IP•/A //

f

��

P• ⊗
A
P• //

��

P• //

��

0

0 // IQ/A // Q⊗
A
Q // Q // 0

The right-hand vertical arrow induces an isomorphism on homology by construc-
tion. Since Q is flat over A the middle vertical arrow also induces an equivalence
on homology. Hence by the 5-lemma the map f is an equivalence.

This map f factors into a sequence of maps of simplicial modules

IP•/A ' IP•/A ⊗
P e•

P e• → IP•/A ⊗
P e•

Qe → IQ/A.

The left-hand arrow in this sequence is an equivalence by a straightforward spectral
sequence argument (since IP•/A is a projective P e• -module). Since the composite
arrow is an equivalence, it follows that IP•/A ⊗

P e•

Qe is a projective Q-bimodule

resolution of IQ/A.
Hence the complex IP•/A ⊗

P e•

Qe ⊗
Qe
Q ' IP•/A ⊗

P e•

Q (which is precisely ΛQ/A)

computes TorQ
e

∗ (IQ/A, Q). Using the long exact sequence of Tor applied to the
sequence 0 → IQ/A → Qe → Q → 0, and the fact that TorQ

e

∗ (Qe, Q) vanishes for
∗ > 0, we see that

TorQ
e

q+1(Q,Q) ∼−→ Hq(ΛQ/A)
as desired.

21. End of the calculation

In this section we show that the André-Quillen cohomology groups, denoted
Hs
E0/m

(E0F/m, Et), vanish, which by Corollary 20.4, Corollary 19.4, Corollary 19.6,
and Corollary 19.3 proves part (2b) of Theorem 14.5.

21.1. Differentials and the Frobenius map. Suppose that A is an Fp -
algebra, and B an A-algebra. Then the map σB : B → B defined by σB(x) = xp is
a homomorphism. For an algebra map A→ B we get a commutative diagram

B
σB // B

A
σA //

OO

A

OO
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Of course, σB is not in general a map of A-algebras. Let σ∗B denote the pushout
of commutative rings in

B // σ∗B

A

OO

σA // A

OO

Then there is an A-algebra map φ : σ∗B → B (the Frobenius map). If B = A[X ]
is a polynomial algebra over A generated by the set X , then σ∗B ' A[X ], and φ
sends x ∈ X to xp.

Proposition 21.2. For any A-algebra B as above, the map

Lσ∗B/A → LB/A

induced by φ : σ∗B → B is the 0 map.

Proof. Let Q• → B be a cofibrant commutative A-algebra resolution of B.
We may suppose that Qn = A[Xn] for some set Xn. Then σ∗Q• → σ∗B is a
commutative A-algebra resolution of σ∗B. If we apply the differentials functor
Ω−/A we get induced maps which send

dx 7→ dφ(x) = d(xp) = pxp−1dx = 0

for each x ∈ Xn ⊂ σ∗Qn. Thus, on the level of complexes, we get the zero map
Lσ∗B/A → LB/A.

Corollary 21.3. If B is an A-algebra and if the maps σA and σB are iso-
morphisms, then H∗(LB/A) ≡ 0.

Proof. If σA and σB are isomorphisms, then φ : σ∗B → B is an isomorphism
of A-algebras, whence Lφ is an equivalence. But Lφ ∼ 0 by Proposition 21.2.

21.4. The Frobenius map on E0F/m. Recall from Remark 17.4 that if
E = F = En, then one can compute that

B = E0F/m ' (Fpn ⊗
Fp

Fpn )[e0, e1, e2, . . . ]/(e
pn−1
0 − 1, ep

n

1 − e1, e
pn

2 − e2, . . . ).

Clearly the Frobenius maps on A = Fpn and on B are isomorphisms, so in this case
we are done.

More generally, let E = Ek1,Γ1 and F = Ek2,Γ2 , and let A = E0/m = k1,
B = E0F/m and let Q be a commutative ring of characteristic p. Then given a
map of rings f : B → Q there is a commutative diagram

B

f

��

σB // B

f

��
Q

σQ // Q

In other words, there are two maps

(σB)∗, (σQ)∗ : HomRing(B,Q)� HomRing(B,Q);

the top map takes f to σQf , the bottom map to fσB, and (σB)∗ = (σQ)∗. Thus to
show that σB is an isomorphism, it suffices to show that (σQ)∗ is an isomorphism
for all Q.
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Recall (from Remark 17.2) our homotopy pull-back square

HomRing(E0F/m, Q) //

��

HomRing(k2, Q)

��
HomRing(k1, Q) // fgl(Q)

which is functorial in Q. The automorphism σQ induces a map between such
squares. Since k1 and k2 are perfect fields, the induced pth-power maps (σQ)∗ on
HomRing(k1, Q) and HomRing(k2, Q) are isomorphisms.

Let fgln(Q) ⊂ fgl(Q) denote the full subgroupoid of formal group laws of height
n. (Although Q is only a ring of characteristic p, and not in general a field, we
define height as before: a formal group law F has height n if [p]F (x) = axp

n

+ · · ·
where a ∈ Q is an invertible element. Under this definition it is possible for a
formal group law over Q to not have a well-defined height. Note however that if
f : F → G is an isomorphism of formal group laws over Q, and if F is of height n,
then G is also of height n, since [p]G = f ◦ [p]F ◦ f−1.)

Proposition 21.5. There is a natural isomorphism of the functor

(σnQ)∗ : fgln(Q)→ fgln(Q)

with the identity functor, whence σ∗Q is an equivalence of categories.

Corollary 21.6. The Frobenius map on E0F/m is an isomorphism.

Recall that there is a homomorphism αF : F → σ∗F of formal group laws given
by αF (x) = xp.

Lemma 21.7. Given a map f : F → G of formal group laws over a ring of
characteristic p, such that f ′(0) = 0, there exists a unique map g : σ∗F → G of
formal group laws such that g ◦ αF = f .

Proof. Because f(F (x, y)) = G(fx, fy), applying ∂
∂y and setting y = 0 gives

f ′(x)F2(x, 0) = G2(fx, 0)f ′(0), whence f ′(x) = 0. Thus f(x) = g(xp) for a (unique)
power series g. Since

g(σ∗F (xp, yp)) = g(F (x, y)p) = f(F (x, y)) = G(fx, fy) = G(g(xp), G(yp))

we see that g(x+
F
y) = g(x) +

G
g(y).

Proof of Proposition 21.5. If F is a formal group law of height n, then
the p-series [p]F (x) : F → F has the form [p]F (x) = axp

n

+ · · · , with a invertible.
Thus by Lemma 21.7 there exists a unique isomorphism βF : (σn)∗F → F such that
βF ◦ αnF = [p]F .

If h : F → G is a map between height n formal group laws, we see that

h(βF (xp
n

)) = h([p]F (x)) = [p]G(h(x)) = βG(h(x)p
n

) = βG(h(xp
n

)),

whence h ◦ βF = βG ◦ h, whence β : (σn)∗ → id is an natural isomorphism of
functors. Thus (σn)∗ is an equivalence of categories.
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Part 4. Construction of the A∞-ring structures

In the following sections we show that the homology theories introduced in Sec-
tion 6 admit A∞-ring structures, by showing that certain obstructions to the exis-
tence of such structures vanish. This technique originated in work of Robinson [15]
on the existence of A∞-structures for Morava K-theories (see also Remark 23.8).

22. Producing an algebra structure

We still need to show that for each formal group law (k,Γ) the ring spectrum
E = Ek,Γ admits an A∞-structure. That is, for an appropriate A∞-operad C, we
want a map of operads making the diagram

C //

��?
??

???
??

EE

~~} }
} }
} }
}

L
commute. Recall from Section 12.1 that EE is an operad with EE[n] = S(E(n), E).

We will choose our operad C so that it is a cofibrant A∞ operad.

22.1. Free operads. If A is a Σ-object in some symmetric monoidal category,
the free operad FA on A is an operad equipped with a map of Σ-objects A→ FA
inducing an isomorphism

Homoper(FA,C) ' HomΣ(A,C),

for each operad C. There is a free operad functor which is left adjoint to the
forgetful functor from operads to Σ-objects.

Since operads are monoids in the category of Σ-objects, the free operad should
really be a kind of “free monoid”. This is true, but the formula for such a free
monoid is somewhat strange. Morally speaking,

FA = I qA ◦ (I qA ◦ (I qA ◦ (· · · ))).
More precisely, FA can be written as a countable colimit of expressions of the above
form which terminate at some finite depth.

The reason for this strange formula is that the monoidal structure ◦ on Σ-
objects is not “bi-distributive”; rather, it distributes over coproducts on the right,
but not on the left. I.e., in general (AqB)◦C ' (A◦C)q(B◦C), but A◦(BqC) 6'
(A ◦B)q (A ◦ C).

22.2. Model category for operads. We give a model category structure for
the category s oper of simplicial operads.

Say a Σ-object A is Σ-free if each A[n] is free as a Σn-simplicial set. We define
a closed model category for simplicial operads by letting f : A→ B be

1. a weak equivalence if each map f [n] : A[n] → B[n] is a weak equivalence
on the underlying simplicial set, and

2. a cofibration if it is a retract of a free map. A free map is a map f of the
form

fn : An → Bn ' An q
oper
FXn

where Xn is a discrete, Σ-free Σ-object, and such that the subobjects Xn ⊂
Bn are closed under degeneracy operators.
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That this indeed gives a model category structure follows from general results of
Quillen [11].

To produce our desired operad C, first let A→ L be an arbitrary A∞-operad
over the linear isometries operad. Let SingA be the simplicial operad obtained by
taking singular simplices, and let C̃ → SingA be a cofibrant resolution of SingA; we
can choose C̃ so that C̃n = FKn for some Σ-free Σ-object Kn. Then by adjunction
we get a map C = |C̃| → A which is a weak equivalence of topological operads.

22.3. The spectral sequence. We want to show that map(oper↓L)(C, EE) is
non-empty. The simplicial object C̃n = FKn leads to a cosimplicial space Y •, with

Y n = map(oper↓L)(FKn, EE),

with TotY • = map(oper↓L)(|C̃|, EE). Thus, if we choose an element σ ∈ π0Y
0
�

π0Y
1, there is an obstruction theory / spectral sequence of the cosimplicial space

(see Section 14) with

Es,t2 = πsπt
(
map(oper↓L)(FKn, EE), σ)

)
.

22.4. Identification of E0,0
2 . We need to compute the equalizer of the pair

of arrows
π0 map(oper↓L)(FK0, EE)� π0 map(oper↓L)(FK1, EE).

Note that for any operad B over L there is a natural map

π0 map(oper↓L)(B, EE)→ Homoper(π0B, π0EE)

which sends an operad map f : B → EE over L to the map π0f : π0B → EE , where
π0B denotes the discrete operad with (π0B)[n] = π0(B[n]).

Since EE [n] ' S(E(n), E), we see that π0EE [n] ' [E(n), E]. In fact, by Propo-
sition 15.5,

π0EE [n] ' HomE∗((E∗E)⊗n, E∗).
Now suppose B = FK for some discrete Σ-object K equipped with a map

K → L. Such a K is necessarily Σ-free, since L is. There is a commutative
diagram

π0 map(oper↓L)(FK, EE) //

��

Homoper(FK,π0EE)

��
π0 map(Σ↓L)(K, EE) // HomΣ(K,π0EE)

The vertical arrows are isomorphisms by the characteristic property of a free operad.
The lower horizontal arrow is also an isomorphism, since K is discrete and Σ-free.
Thus the upper horizontal arrow is an isomorphism. Thus we see that E0,0

2 is
isomorphic to the equalizer of the pair of arrows

E0,0
2 → Homoper(FK0, π0EE)� Homoper(FK1, π0EE).

Since π0C, the coequalizer of FK1 � FK0, is the associative monoid operad, it
follows that E0,0

2 ' Homoper(π0C, π0EE). This is precisely the set of ring spectrum
structures on E; that is, an associative ring spectrum structure on E (in the “clas-
sical” sense, rather than in the A∞ sense) is precisely equivalent to a map from the
associative operad to π0EE .
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22.5. Identification of E2-term. Let us now choose the element σ ∈ E0,0
2

corresponding to the “usual” ring spectrum structure on E. We obtain as before
an obstruction theory / spectral sequence with

Es,t1 ' πt
(
map(oper↓L)(FKs, EE), σ

)
and “converging” to πt−s

(
map(oper↓L)(C, EE), σ

)
.

Theorem 22.6. The E2-term of this spectral sequence is given by

Es,t2 =

{
0 if s > 0,
[ΣtE,E] if s = 0, t > 0.

Proof. This follows from the discussion of Section 23.1, Theorem 23.5, Re-
mark 23.6, and Proposition 23.7.

In particular, the obstruction groups Es,s−1
2 vanish identically, and so

Corollary 22.7. The spectrum E admits an A∞-ring structure whose under-
lying ring structure is equivalent to the usual one.

23. Computation of algebra-structure obstruction groups

If B is an operad and K is an unpointed space, let map(K,B) denote the
operad with map(K,B)[n] = map(K,B[n]), and with operad structure given by
“point-wise composition”. Now if given a map B → L of operads, define an operad
BK over the linear isometries operad via the pullback square

BK //

��

map(K,B)

��
L = map(pt,L) // map(K,L)

To prove Theorem 22.6, we must first compute the E1-term. Suppose that
B → L is a map of operads, and σ : B → EE is some fixed map of operads over L.
Then the set

πt
(
map(oper↓L)(B, EE), σ

)
is the same as the set of homotopy classes of maps St → map(oper↓L)(B, EE) which
send the base-point of the sphere to σ, and where homotopies are base-point pre-
serving.

pt σ //

��

map(oper↓L)(B, EE)

St

77pppppp

By adjunction, these are the same as homotopy classes of lifts in the diagram

EStE

�� ��?
??

??
???

B

??~
~

~
~

// EE // L
That is, there is a natural isomorphism

πt
(
map(oper↓L)(B, EE), σ

)
→ π0

(
map(oper↓EE)(B, ES

t

E )
)
.
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There is a natural map

π0 map(oper↓L)(B, ES
t

E )→ Homoper(π0B, π0EE).

If B = FK and K is discrete and Σ-free there is a square

π0 map(oper↓L)(FK, ES
t

E ) //

��

Homoper(FK,π0ES
t

E )

��
π0 map(Σ↓L)(K, ES

t

E ) // Homoper(K,π0ES
t

E )

The vertical arrows are isomorphisms by the universal property of free operads.
The lower horizontal arrow is an isomorphism since K is discrete and Σ-free. Thus
the top horizontal arrow is an isomorphism. This isomorphism, and the fact that
the map EStE → EE is a split fibration (using the base-point of St), implies that the
map

π0
(
map(oper↓EE)(FK, ES

t

E )
)
→ map(oper↓π0EE)(FK,π0ES

t

E )
is an isomorphism.

Since EStE [n] is weakly equivalent to map(St, EE [n]), it follows that

π0ES
t

E [n] = HomE∗

(
(E∗E)⊗n, E∗[ε]/ε2

)
,

where |ε| = −t; furthermore, the projection map π0ES
t

E → π0EE sends ε to 0.
Since the pinch map St → St ∨ St makes the sphere into a cogroup up to

homotopy, the induced map of operads

π0ES
t

E ×
π0EE

π0ES
t

E ' π0ES
t∨St

E → π0ES
t

E

makes π0ES
t

E into an abelian group object in the category of operads over π0EE .

23.1. Quillen cohomology of an operad. Suppose A → B is a map of
discrete operads. Let C• be a cofibrant resolution of a discrete operad A. Let
N → B be an abelian group operad over an operad B. Then we define the Quillen
cohomology of an operad by

Hs(A,N) = Hs
[
Hom(oper↓B)(C•, N)

]
.

In our case we take A to be the associative operad, B = π0EE , and we take
N = π0ES

t

E for t > 0. Thus we have that

Es,t2 = Hs(A, π0ES
t

E ).

23.2. Bimodules. Let A be an operad. An A-bimodule is a Σ-object M
equipped with maps ` : A ◦M →M and r : M ◦A→M such that the diagrams

A ◦A ◦M
µ◦M //

A◦`
��

A ◦M
`

��

M ◦A ◦A
M◦µ //

r◦A
��

M ◦A
r

��
A ◦M ` // M M ◦A r // M
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and

A ◦M
`

##GG
GGG

GGG
G M
η◦Moo M◦η// M ◦A

r

{{w w w
w w w

w w w

M
commute.

There are several examples of bimodules.
1. A is itself an A-bimodule.
2. IfK is a Σ-object, then A◦K◦A is anA-bimodule, called the freeA-bimodule

on K
3. If X and Y are objects, define a Σ-object hom(X,Y ) by

hom(X,Y )[n] = Hom(X⊗n, Y ).

If X = Y , then hom(X,X) is the endomorphism operad of X . If X and Y
are A-algebras, then hom(X,Y ) is an A-bimodule.

An A-bimodule M induces a functor from A-algebras to A-algebras as follows.
Define M ◦

A
(X) by the coequalizer

M ◦
A

(X) = Cok ((M ◦A)(X)�M(X)) .

Note that if M = A, then A ◦
A

(X) ' X ; i.e., the bimodule A induces the identity

functor on A-algebras. Likewise, if M = A◦d, then A◦d ◦
A

(X) ' Ad−1(X). There is

an adjunction

HomA- bimod (M, hom(X,Y )) ' HomA- alg

(
M ◦

A
(X), Y

)
.(23.3)

23.4. Bar complex. If M and N are A-bimodules, let B(M,A,N) denote
the simplicial object

M ◦N M ◦A ◦Noooo M ◦A ◦A ◦Noooo
oo · · ·oooo

oooo

In particular, B(A,A,A) is a resolution of A by free A-bimodules.
If N → B is a coefficient system (i.e., an abelian group object over B), then

we define the Hochschild cohomology of A by

HHs(A,N) = Hs
[
Hom(A- bimod↓B)

(
B(A,A,A), N

)]
.

The fact that relates the Quillen cohomology and Hochschild cohomology of an
operad is the following.

Theorem 23.5. [14] If A is a discrete, Σ-free operad, and N is a coefficient
system for A, then there is an exact sequence

0→ HH0(A,N)→ HH0(I,N)→ H0(A,N)→ HH1(A,N)→ 0

and isomorphisms
Hs(A,N) ' HHs+1(A,N)

for s > 0.
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Remark 23.6. Recall that I denotes the “trivial operad”. Since I ◦ I ' I, the
bar complex B(I, I, I) is constant, so the Hochschild cohomology of I is concen-
trated in degree 0. In the case of interest to us, in which the coefficient system N

is π0ES
t

E → π0EE pulled back along I → π0EE , it is trivial to show that

HH0(I,N) ' Hom(I- bimod↓π0EE)(I, π0ES
t

E )

' HomE∗(E∗E,E∗+t)

' [ΣtE,E],

and that
HHs(I,N) = 0 for s > 0.

Proposition 23.7. If A is the associative operad, then HHs(A, π0ES
t

E ) ' 0
for all s ≥ 0 and t > 0.

Proof. These cohomology groups are computed using the co-chain complex

Cn = Hom(A- bimod↓π0EE)(A◦n+2, π0ES
t

E ).

Note that

HomA- bimod(A◦n+2, π0ES
t

E ) ' HomA- bimod
(
A◦n+2, homE∗(E∗E,E∗[ε]/ε

2)
)

' HomA- alg(A◦n+2 ◦
A

(E∗E), E∗[ε]/ε2)

' HomE∗- alg
(
Tn+1(E∗E), E∗[ε]/ε2)

)
,

using the adjunction of (23.3). Likewise,

HomA- bimod(A◦n+2, π0EE) ' HomE∗- alg
(
Tn+1(E∗E), E∗

)
.

Thus,
Cn ' Hom(E∗- alg↓E∗)(T

n+1(E∗E), E∗[ε]/ε2),
and as we know from Sections 20 and 21, this complex computes DersE∗(E∗E,E∗+t),
which vanishes.

Remark 23.8. Compare this to Robinson’s calculation [15]. If we had taken
E ' K(n), the nth MoravaK-theory, and if p is odd (so that K(n) is a commutative
ring spectrum), then the proof of Proposition 23.7 shows that HHs(A, π0ES

t

E ) is
the Quillen cohomology of the K(n)-algebra K(n)∗K(n) with coefficients in the
module K(n)∗+t. By a result of Quillen [12], these groups are the same up to a
shift in dimension as the Hochschild cohomology of the algebra K(n)∗K(n); this
recovers Robinson’s calculations of the obstruction groups for this spectrum.

The Hochschild cohomolgy of K(n)∗K(n) is in general non 0. However, the al-
gebraK(n)∗K(n) ' Σ(n)⊗Λ(n), where Λ(n) is an exterior algebra on n-generators,
and the Hochschild cohomology of K(n)∗K(n) originates almost entirely from this
exterior factor. By replacing K(n) with Ek,Γ we get rid of this contribution.

Proof of Theorem 23.5. Let C• → A be a cofibrant resolution of the op-
erad A by free operads; thus, Cn = FKn. We obtain a double complex Dm,n =
B(Cn, Cn, Cn)m of bimodules using the bar construction. The diagonal of D•,• is
a C•-bimodule resolving C•. If N is a coefficient system for A, then by applying
Hochschild cohomology we obtain a spectral sequence

HHs(Cn, N) =⇒ HHs+n(A,N).

Thus the theorem easily follows from the following lemma.
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Lemma 23.9. Let C be a discrete operad. Then there is a sequence

0→ HH0(C,N)→ HH0(I,N)→ H0(C,N)→ HH1(C,N)→ 0

natural in C; furthermore, if C = FK for some Σ-object K, the sequence is exact,
and HHs(C,N) ' 0 for s > 1.

Proof. See [14].
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