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Abstract. We show that the class of p-complete connective spectra with
finitely presented cohomology over the Steenrod algebra admits a duality the-
ory related to Brown-Comenetz duality. This construction also produces a
full-plane version of the classical Adams spectral sequence for such spectra,
which converges to the homotopy groups of a “finite” localization.

1. Introduction

In the paper [3], Brown and Comenetz introduced a notion of duality into stable
homotopy. In [4] Hopkins and Gross showed that this notion in certain situations
is closely connected with Spanier-Whitehead duality. In this note we wish to ex-
plore this connection and investigate it in connection with Adams spectral sequence
considerations. In particular, we study a class of spectra which we call fp-spectra
(Section 3). These are connective, p-complete spectra whose mod p cohomology
is finitely presented over the Steenrod algebra; that is, the cohomology of such a
spectrum is described by a finite set of generators together with a finite set of rela-
tions. This class of spectra includes the Johnson-Wilson spectra BP 〈n〉, connective
K-theories, and the “higher” connective K-theory spectrum eo2. The class of fp-
spectra also includes some objects whose Bousfield Ln-localizations are the same as
Ln localizations of finite complexes, at least in some cases. A classical example is
the connective image-of-J spectrum, whose L1-localization is L1S

0. It follows from
calculations of Shimomura and Yabe that a −1-connective cover of L2S

0 at primes
p ≥ 5 is also an fp-spectrum (Proposition 3.7).

We show that the category of fp-spectra admits a notion of duality (Theo-
rem 8.11). This duality is related to both Brown-Comenetz duality and Spanier-
Whitehead duality. The dual WX of an fp-spectrum X will be defined to be the
Brown-Comenetz dual of the fiber of the map X → LfnX to the “finite localiza-
tion” of X (for n sufficiently large). The dual WX is itself an fp-spectrum. This
duality is related to Spanier-Whitehead duality through its action on cohomology,
in the following sense. If H∗X ≈ A∗ ⊗A∗(n) M where A∗(n) ⊂ A∗ is a finite
sub-Hopf algebra of the Steenrod algebra, and M is a finite A∗(n) module, then
H∗WX ≈ A∗ ⊗A∗(n) M̌ , where M̌ ≈ homFp(M, Fp) is the “Spanier-Whitehead
dual” of M as a finite module over A∗(n).

Because of this duality, the Lfn-localization of an fp-spectrum is quite com-
putable. We show that there is a full-plane spectral sequence computing π∗LfnX ,
with E2-term a “Tate cohomology” of H∗X as a module over the Steenrod algebra
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(Proposition 6.3 and Theorem 7.1). In all cases we know of LfnX ≈ LnX for an
fp-spectrum X .

1.1. Organization of the paper. In Section 2 we discuss modules and comodules
which are finitely presented over the Steenrod algebra. In Section 3 we define the
notion of fp-spectra, and give examples. In Section 4 we discuss a duality functor
for finitely presented comodules over the Steenrod algebra, which is related to
the action of Brown-Comenetz duality on Eilenberg-Mac Lane spectra discussed
in Section 5. In Section 6 we note that an fp-spectrum admits a tower associated
to a spectral sequence whose E2-term is the “Tate cohomology” of the homology
of the spectrum, and in Section 7 show that such a tower realizes the localization
functor Lfn. In Section 8 we describe the duality theory of fp-spectra. In Section 9
we calculate some examples.

1.2. Notation. In this paper we work at one prime p at a time. We let A∗ denote
the mod p Steenrod algebra, and A∗ denote the dual mod p Steenrod algebra.

Unless otherwise indicated, all vector spaces, modules, and comodules in this
paper are graded. If V is a graded vector space over Fp , then V̌ denotes the linear
dual hom(V, Fp ). If V is a left comodule over a graded Hopf algebra B, then V̌ is
taken to be a left comodule over B, via the canonical anti-automorphism χ of B.

When dealing with graded objects, we use the following sign convention: a sign
is introduced whenever two symbols of odd degree are commuted.

2. Finitely presented modules and comodules over the Steenrod

algebra

A module M over the mod p Steenrod algebra A∗ is called finitely presented
if it fits in an exact sequence of modules

A∗ ⊗ V1 → A∗ ⊗ V0 →M → 0

where Vi for i = 0, 1 are finite dimensional graded Fp -vector spaces. Likewise, a
comodule N over the dual mod p Steenrod algebra A∗ is called finitely presented
if it fits in an exact sequence of comodules

0→ N → A∗ ⊗ V0 → A∗ ⊗ V1

where Vi for i = 0, 1 are finite dimensional graded Fp -vector spaces. Because all
finitely presented modules and comodules are of finite type, we can pass easily
between comodule and module language by taking vector space duals.

The Steenrod algebra A∗ is a union of finite-dimensional sub-Hopf algebras. For
example, A∗ =

⋃
nA
∗(n), where A∗(n) ⊂ A∗ is a finite dimensional sub-Hopf

algebra of the Steenrod algebra, generated as an algebra by {Sq2i | i ≤ n+ 1 } if
p = 2 and by { β, P pi | i ≤ n } if p is odd. Recall that A∗ is free as an A∗(n)-module.

Lemma 2.1.
1. A module M over A∗ is finitely presented if and only if it is of the form
M ≈ A∗ ⊗E N for some finite dimensional sub-Hopf algebra E ⊂ A∗ and
some finite dimensional E-module N .

2. Every map f : M → M ′ of finitely presented A-modules is of the form f ≈
A∗⊗E g : A∗⊗EN → A∗⊗EN ′ for some finite dimensional sub-Hopf algebra
E ⊂ A∗ and some map g : N → N ′ of finite dimensional E-modules.
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Proof. Any finite sub-Hopf algebra E ⊂ A∗ is contained in A∗(n) for some n ≥ 0,
whence part 1 is [12, Ch. 13, Prop. 2(a)]. Part 2 follows by similar arguments.

Proposition 2.2.
1. The kernel and cokernel of a map of finitely presented A∗-modules are finitely

presented.
2. A retract of a finitely presented A∗-module is finitely presented.
3. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence in which M ′ and M ′′

are finitely presented, then M is also finitely presented.

Proof. Since A∗ is A∗(n)-free, the functor A∗ ⊗A∗(n) (−) is exact, and hence part
1 follows from (2.1).

To prove part 2, note that a retract N of M is the kernel of an idempotent
self-map e : M →M . Hence part 2 follows from part 1.

The proof of part 3 is a standard result about finitely presented modules over
any ring.

Proposition 2.3. Suppose M is an A∗-module and F is a finite A∗-module. Then
M is finitely presented if and only if M ⊗ F is.

Proof. It is immediate from (2.2) that M ⊗ F is finitely presented if M is, since F
admits a finite filtration whose subquotients are copies of Fp .

Suppose M ⊗F is finitely presented. Since F is a finite module, we can choose a
“pinch” map π : F → ΣdFp to a “bottom-dimensional cell” of F , and we can write
i : F̄ → F for the kernel of π. Then there is an exact sequence

M ⊗ F̄ ⊗ F 1⊗i⊗π−−−−→M ⊗ F 1⊗π−−→M → 0

which exhibits M as a cokernel of a map between finitely presented modules, and
the result follows from (2.2).

Remark 2.4. Note that (2.1), (2.2), and (2.3) dualize to similar statements about
finitely presented comodules. We will not state the dual form of these results,
although we will make use of them in what follows.

2.5. Homological algebra for finitely presented comodules. Henceforth we
concentrate on finitely presented comodules. We let Mfp denote the category of
finitely presented comodules over A∗. By (2.2) we see that Mfp is an abelian
category.

Proposition 2.6. The dual Steenrod algebra A∗, viewed as a A∗-comodule, is both
projective and injective in Mfp, and Mfp has enough projectives and injectives.

Proof. It is clear that A∗ is injective in the full category of A∗ comodules, and
hence A∗ is injective inMfp and there are enough injectives inMfp. To prove that
A∗ is projective, consider a surjection M →M ′ of finitely presented comodules. By
(2.1), this map is extended up from a surjectionN → N ′ of finite A∗(n)-comodules.
Since homA∗(A∗,M) ≈ homA∗(n)(A∗, N) and A∗ is A∗(n)-free, any map A∗ →M ′

can be lifted to a map to M . Furthermore, we can always produce enough maps
from A∗ to a finitely presented comodule, and thusMfp has enough projectives.

Remark 2.7. It is known that the Steenrod algebra is injective as an A∗-module
over itself [12, p. 201]. It would be interesting to know whether A∗ is projective as
a comodule over itself, without the restriction to the finitely presented category.
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Given a finitely presented comodule M , one can define its Tate cohomology
as follows. By (2.6) we can choose injective and projective resolutions

0→M → C0 → C1 → C2 → . . .

and
. . .→ C−3 → C−2 → C−1 →M → 0

by finitely generated free A∗-comodules. By gluing the ends together, we obtain an
unbounded complex

. . .→ C−2 → C−1 → C0 → C1 → . . . ,

which in each degree is injective in the category of comodules. For s ∈ Z define

Hs
Tate(M) = Hs [homA∗(Fp , C•)] .

Of course, if we can write M ≈ A∗ ⊗A∗(n) N for some A∗(n)-comodule N , and we
choose resolutions 0 → N → D• and D−• → N → 0 of N by finite free A∗(n)-
comodules, then we see that

Hs
Tate(M) ≈ Hs

[
homA∗(n)(Fp , D•)

]
.

These groups are the same as morphisms in the stable category of A∗(n)-modules,
as is shown in [7, Sec. 9.6].

3. fp-spectra

In this section we define the notion of fp-spectra, and produce several examples.
Recall that we work in the category of p-local spectra.

We first note the following theorem of Mitchell.

Theorem 3.1 (Mitchell). [13] For each n there exists a non-trivial finite complex
F such that H∗F is A∗(n)-free.

If X is a spectrum, say that π∗X is finite if πkX = 0 for all but finitely many
k ∈ Z, and is a finite group otherwise.

Proposition 3.2. Suppose X is a connective, p-complete spectrum. Then the fol-
lowing are equivalent.

1. H∗X is finitely presented as a comodule over the Steenrod algebra.
2. H∗X ≈ A∗ ⊗A∗(n) M for some n ≥ 0 and some finite A∗(n)-comodule M .
3. There exists a non-trivial finite complex F such that X ∧ F is a finite wedge

of suspensions of mod p Eilenberg-Mac Lane spectra.
4. There exists a non-trivial finite complex F such that π∗(X ∧ F ) is finite.

Proof. The equivalence of 1 and 2 is just (2.1). Likewise, 4 is immediate given 3.
To show that 2 implies 3, we let F be as in (3.1), with H∗F free over A∗(n).

Thus H∗(X ∧ F ) is free over the Steenrod algebra on a finite set of generators,
whence X ∧ F is a wedge of mod-p Eilenberg-Mac Lane spectra HFp .

To show that 4 implies 1, note that if π∗Y is finite for a spectrum Y , then Y
can be built from finitely many copies of HFp , whence H∗Y is finitely presented
by (2.2). Thus if π∗(X ∧ F ) is finite, then H∗(X ∧ F ) ≈ H∗X ⊗ H∗F is finitely
presented, and hence H∗X is finitely presented by (2.3).
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We call a spectrum X an fp-spectrum if it is connective, p-complete, and
satisfies any of the four equivalent statements of (3.2). Let C denote the class
of all fp-spectra. This class includes the Eilenberg-Mac Lane spectra HZ/pn and
HZp, the p-completed Johnson-Wilson spectrum BP 〈n〉, which has π∗BP 〈n〉 ≈
Zp[v1, . . . , vn], and connective Morava K-theories. Non-trivial suspension spectra,
and in particular finite complexes, are not fp-spectra.

Recall that a finite complex F is of type n if K(0)∗F ≈ · · · ≈ K(n− 1)∗F ≈ 0
and K(n)∗F 6≈ 0, where K(m) denotes the mth Morava K-theory. Define the
fp-type of an fp-spectrum X by

fptype(X) = min{(type(F )− 1) such that π∗(X ∧ F ) is finite}.
By the thick subcategory theorem [6], if fptype(X) = n then π∗(X ∧ F ) is fi-
nite for all F of type > n. Thus, fptype(HFp) = −1, fptype(HZp) = 0, and
fptype(BP 〈n〉) = n. Furthermore, if H∗X ≈ A∗ ⊗A∗(n) M , then fptype(X) ≤ n.

Let Cn denote the class of fp-spectra of type ≤ n. Then Cn is a subcategory of
the category of spectra, and Cn ⊂ Cn+1.

Proposition 3.3. The classes C and Cn for n ≥ −1 are thick subcategories of the
homotopy category of spectra.

Proof. That C is a thick subcategory is an immediate consequence of criterion 4 of
(3.2). Alternately, this follows from criterion 1 of (3.2) together with (2.2). The
proof for Cn is similar.

For example, C−1 is the class of all p-complete spectra X with π∗X finite; as a thick
subcategory it is generated by HFp . Likewise, C0 is the class of all fp-spectra which
are finite Postnikov towers; as a thick subcategory it is generated by HZp. The
class C1 contains the p-completed connective K-theory spectra bo and bu, along
with their connective covers. Thus C1 contains the image of J spectrum, since
J ≈ fib(bo → bspin). The class C2 contains eo2, the connective version of the
“higher real K-theory” spectrum EO2 of Hopkins and Miller.

3.4. Ln-localization and fp-spectra. Let Ln denote Bousfield localization with
respect to the wedge K(0) ∨ · · · ∨K(n) of Morava K-theories. A spectrum W is
Ln-local if LnW ≈W .

Proposition 3.5. Let W be an Ln-local spectrum such that for each k ∈ Z the
homotopy group πkW has the form

πkW ≈ Fk ⊕Z⊕akp ⊕ (Q/Z(p))⊕bk ⊕ Q⊕ckp ,

where Fk is a finite p-group, ak = 0 = ck for all sufficiently small k � 0, and
bk = 0 = ck for all sufficiently large k � 0.

Then there exists a map f : X → W such that X is an fp-spectrum of fp-type n
and LnX → LnW ≈W is a weak equivalence.

Proof. Consider the connected cover Y = W (−N, . . . ,∞), where N is chosen so
that ak = ck = 0 for k < −N . If F is a finite complex with bottom cell in dimension
0 and top cell in dimension d, then the map Y ∧ F → W ∧ F is an isomorphism
on πk for k > d−N , as can be seen by comparing the Atiyah-Hirzebruch spectral
sequences computing Y∗F and W∗F .

If F is a type (n + 1) complex, then W ∧ F ≈ ∗, and so Y ∧ F has non-trivial
homotopy in only a finite range of dimensions (−N, . . . , d−N), and each homotopy
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group is finite. Thus we have found a connective spectrum Y which satisfies criterion
4 of (3.2), and furthermore LnY ≈ W , since the fiber of Y → W is coconnective
with torsion homotopy and thus is killed by Ln.

In order to get a p-complete spectrum, it suffices to replace any copies of Q/Z(p)
or Qp in the homotopy of Y by a finite torsion group or a copy of Zp respectively;
by hypothesis there are only finitely many such copies to worry about. Note that
[Σ−iHA,HQ/Z(p)] is a finite torsion group if A is a finitely generated Zp-module
and i > 0; thus by induction on the Postnikov tower of Y we can see that we can
always find a map

Y →
r∨
i=1

ΣniHQ/Z(p)

which is surjective on homotopy, and so that the fiber X of this map is p-complete.
Then since LnHQ/Z(p) ≈ ∗ we see that X is the desired spectrum.

Remark 3.6. In view of Conjecture (7.3) and of (8.9), it seems likely that the con-
verse of (3.5) should hold. That is, if X is an fp-spectrum with fptype(X) = n,
then we expect that πkLnX has the form given in (3.5).

It is interesting to know when the Ln-localization of a finite complex F is also
the Ln-localization of an fp-spectrum X . One can say the following.

Proposition 3.7. If F is the p-completion of a finite complex, then LnF is the
Ln-localization of an fp-spectrum X in the following cases,

1. n = 0 or n = 1 (at any prime),
2. n = 2 if p ≥ 5, or
3. for any n and any prime p if F is a type n complex.

Proof. It suffices to show in each case that the hypotheses of (3.5) are satisfied.
The cases n = 0 and n = 1 are well known. In fact, for n = 0 take X = HZp∧F ,

and for n = 1 take X = J ∧ F , where J is the connective image-of-J spectrum.
If n is arbitrary, but F is a type n complex, then the hypotheses of (3.5) hold.

This is a consequence of the fact that the cohomology of the Morava stabilizer
algebra is a finitely generated algebra (see [15, Thm. 6.2.10]), together with Hopkins
and Ravenel’s demonstration of a horizontal vanishing line at the E∞-term of the
Adams-Novikov spectral sequence of LnF (see [16, Section 8.3]). These imply that
πkF is finite for all k.

When n = 2 and p ≥ 5, one can take a spectrum of the form Y ∧ F , where Y is
an fp-spectrum such that L2Y ≈ L2S

0. We show that the hypotheses of (3.5) hold
for L2S

0 at p ≥ 5.
First, we note that the hypotheses of (3.5) hold for L2M(p), the localization of

the mod p Moore space. This is a consequence of calculations of Shimomura [18],
as we explain below. There is a diagram

L2M(p) //

��

L1M(p) //

��

L2M(p, v∞1 )

∼
��

LK(2)M(p) // L1LK(2)M(p) // L2M(p, v∞1 )

in which the left-hand square is a pull-back square; this is because all the objects in
it are L2-local, and the square is a pull-back after smashing with K(0)∨K(1)∨K(2).
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Since L1M(p) ≈ L1(v−1
1 M(p)) ≈ L2(v−1

1 M(p)), the top row is a cofiber sequence,
and thus so is the bottom row.

Shimomura computes the E2-term of the Adams-Novikov spectral sequence for
L2M(p, v∞1 ). Using Shimomura’s calculation one may (with careful analysis) read
off that each group πkL2M(p, v∞1 ) must be finite; see the presentation of the results
of this calculation given in [17]. Since πkL1M(p) is known to be finite, this shows
that πkL2M(p) must be finite.

Hovey and Strickland [8, Thm. 15.1] actually carry out the careful analysis to
show that each group πkLK(2)M(p), k ∈ Z, is finite, so we will derive what we
need from their results. To derive the finiteness of πkL2M(p), it suffices to show
that L1LK(2)M(p) has finite homotopy groups. This spectrum is equivalent to
v−1

1 LK(2)M(p), since the v1-self map of M(p) is trivial on K(2)∗M(p). It happens
that π∗LK(2)M(p) decomposes as a finite sum of copies Fp [v1] plus a summand
which is v1-torsion. Thus π∗v−1

1 LK(2)M(p) is a finite sum of copies of the form
Fp [v±1 ], which is clearly a finite group in each dimension.

When n = 2 and p ≥ 5, the hypotheses of (3.5) hold for L2S
0; this is a conse-

quence of the above remarks together with the calculation of Shimomura and Yabe
[19] of π∗L2S

0 at p ≥ 5. They show that the homotopy of L2S
0 consists of a free

summand in dimension 0, summands of the form Q/Z(p) in stems −3, −4, and −5,
together with a summand T consisting of non-infinitely divisible torsion. The above
remarks on the finiteness of πkL2M(p) imply that the summand T of π∗L2S

0 is
finite in each stem.

We are led to make the following conjectures.

Conjecture 3.8. The hypotheses of (3.5) hold for any Ln-localization of a finite
complex, for any n ≥ 0.

Conjecture 3.9. For every finite complex F there exists an fp-spectrum X such
that LnF ≈ LnX.

Of course, Conjecture (3.8) implies Conjecture (3.9) as we have shown above.
There is also reason to believe that Conjecture (3.9) would imply Conjecture (3.8);
see section (7.2).

3.10. Adams towers for fp-spectra. For a spectrum X we can construct an
Adams tower. This is a tower of spectra . . . → Xs+1 → Xs → . . . with X0 = X

and with fiber sequences Xs+1 → Xs
ks−→ Σ−sHVs, where ks is injective on mod p

homology; hence there is a resolution

0→ H∗X → H∗HV•,

and an Adams spectral sequence with Es,t2 = Exts,tA∗(Fp ,H∗X).
If X is an fp-spectrum, we can choose an Adams tower in which each Vs is a

finite dimensional graded vector space. We call such an fp-Adams resolution.
In fact, if H∗X ≈ A ⊗A∗(n) M for some finite A∗(n)-module M , then the chain
complex H∗HV• is induced from a resolution of M by A∗(n)-comodules.

Given an Adams tower {Xs}, we may produce another tower

. . .→ Xs
0 → Xs−1

0 → . . .→ X1
0 → X0

0 → ∗
by taking cofibers Xs+1 → X → Xs

0 . The fibers in this tower are Σ−sHVs →
Xs

0 → Xs−1
0 . Note that in the E2-term of the spectral sequence for this tower, each
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horizontal line Es,∗2 is finite dimensional, and thus the spectral sequence satisfies
the complete convergence condition of [2, p. 263]. Thus the homotopy inverse limit
holimsX

s
0 does not depend on the choice of fp-Adams resolution, and by a result

of Bousfield [1, Prop. 5.8 and Thm. 6.6] is equivalent to X , since X is p-complete
and connective.

4. Duality for finitely presented comodules

In this section we describe a duality functor Ĩ on the category of finitely presented
comodules. This functor was essentially introduced by Brown and Comenetz in [3].
Our interest in this functor stems from the fact that it generalizes the notion of
“Spanier-Whitehead duality” of finite comodules over A∗(n), in which a comodule
is dual to its vector space dual. It will be needed in later sections to study duality
on fp-spectra.

4.1. Construction of functors J̃ and Ĩ. To motivate the construction, note that
if X is a spectrum andH denotes the mod p Eilenberg-Mac Lane spectrum, then the
graded vector space [H,X ]∗ is in a natural way a module over the Steenrod algebra.
This object is approximated by the edge map [H,X ]∗ → homA∗(H∗H,H∗X) of the
Adams spectral sequence. This algebraic approximation itself admits an action by
the Steenrod action, and we will call this module J̃(H∗X). The vector space dual
to J̃(H∗X) will be Ĩ(H∗X), which admits a coaction by the dual Steenrod algebra.

Recall that if we regard the dual Steenrod algebra A∗ as a left-comodule over
itself, then each element a ∈ A∗ of the Steenrod algebra induces a map A∗ → A∗
of left A∗-comodules via

a · z =
∑

(−1)|a||z|z′〈z′′, a〉,

where z ∈ A∗,
∑
z′ ⊗ z′′ is the diagonal of z in A∗ ⊗A∗, and 〈z, a〉 represents the

usual pairing of A∗ and A∗. In fact, there is an isomorphism of algebras

homA∗(A∗, A∗) ≈ A∗.(4.2)

We reserve the notation a · z for this action. Note that this action gives A∗ the
structure of a left A∗-module; however, this is not identical to the usual left action
of the Steenrod algebra on H∗H.

We define a functor J̃ from left A∗-comodules to left A∗-modules by

J̃(M) = homA∗(A∗,M).

This has a natural right A∗-action induced by pre-composition of comodule maps,
using (4.2), which is made into a left A∗-action using χ; if z ∈ A∗, a ∈ A∗, and
f ∈ J̃(M), the left action can be written

(a · f)(z) = (−1)|a||f |f(χa · z).

Note that if M is finitely generated then J̃(M) is bounded below (where we use
cohomological grading for J̃(M)).

We define a functor Ĩ from finitely generated left comodules to left comodules
by

Ĩ(M) = (J̃(M))̌ ≈ homA∗(A∗,M )̌.

Since J̃(M) was bounded below, Ĩ(M) is bounded below, and thus receives a left
comodule structure in the usual way. This structure is characterized as follows: if
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u ∈ Ĩ(M) and u 7→
∑
u′ ⊗ u′′ ∈ A∗ ⊗ Ĩ(M) is the comodule action on u, and if

a ∈ A∗ and f ∈ J̃(M), then

〈u, a · f〉 =
∑

(−1)|a||u
′′|〈u′, a〉〈u′′, f〉.

In comparison, Brown and Comenetz [3] define a functor cp on the category of
A∗-modules; their functor is defined by

cp(M) ≈ homA∗(M,A∗),

with an appropriate A∗-action. Thus, our Ĩ is just a comodule version of their cp.

4.3. Action of J̃ and Ĩ on free comodules. Let Mfree ⊂ Mfp denote the full
subcategory of comodules of the form A∗⊗V , where V is a finite vector space. We
want compute the action of J̃ and Ĩ on this subcategory.

The following describes the categoryMfree.

Proposition 4.4. For finite V and W , homA∗(A∗⊗V,A∗⊗W ) ≈ A∗⊗hom(V,W ),
where a⊗ σ ∈ A∗ ⊗ hom(V,W ) corresponds to the morphism of comodules

z ⊗ v 7→ (−1)|σ||z|a · z ⊗ σ(v), z ∈ A∗, a ∈ A∗, v ∈ V, σ ∈ hom(V,W ),

and composition of maps is given by (a⊗ σ) ◦ (b⊗ τ) = (−1)|σ||b|ab⊗ στ .

Proof. Straightforward.

Proposition 4.5. There is a natural isomorphism

J̃(A∗ ⊗ V ) ≈ homA∗(A∗, A∗ ⊗ V ) ≈ A∗ ⊗ V
of left A∗-modules, where a⊗ v ∈ A∗ ⊗ V corresponds to the map defined by

z 7→ (−1)|z||v|χa · z ⊗ v, z ∈ A∗, a ∈ A∗, v ∈ V.

Given a map a ⊗ σ : A∗ ⊗ V → A∗ ⊗ W of comodules, the induced map J̃(a ⊗
σ) : A∗ ⊗ V → A∗ ⊗W sends b⊗ v 7→ (−1)|b|(|a|+|σ|)b χa⊗ σ(v).

Proof. Straightforward.

Corollary 4.6. There is a natural isomorphism

Ĩ(A∗ ⊗ V ) ≈ (A∗ ⊗ V )̌ ≈ A∗ ⊗ V̌

of left-comodules. The induced map Ĩ(a⊗ σ) : A∗ ⊗ W̌ → A∗ ⊗ V̌ sends

z ⊗ w̌ 7→ (−1)|σ||z|χa · z ⊗ σ̌(w̌), z ∈ A∗, a ∈ A∗, w̌ ∈ W̌ ,

where σ̌ ∈ hom(W̌ , V̌ ) is the adjoint to σ ∈ hom(V,W ). In other words, Ĩ(a⊗σ) =
χa⊗ σ̌.

Remark 4.7. In terms of bases vj and wi for V and W we can view maps A∗⊗V →
A∗ ⊗W as matrices (aij) with entries in the Steenrod algebra, acting by∑

j

zj ⊗ vj 7→
∑
i,j

aij · zj ⊗ wi.

Hence, the induced map Ĩ(aij) : A∗⊗W̌ → A∗⊗V̌ corresponds to the matrix (χaji)
in terms of the dual bases v̌j and w̌i of V̌ and W̌ .
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4.8. Properties of the duality functor.

Proposition 4.9. The functor Ĩ restricts to a functor Ĩ : Mop
fp → Mfp, and is

exact on Mfp. Furthermore, there is a natural isomorphism M → Ĩ ĨM for objects
in Mfp.

Proof. That Ĩ is exact on the subcategory of finitely presented comodules follows
from (2.6). By (4.6) the functor Ĩ takes finitely generated free comodules to the
same, and thus by exactness Ĩ(Mfp) ⊂Mfp.

One can construct a natural isomorphism M → Ĩ ĨM when M ≈ A∗ ⊗ V , since
by (4.6) Ĩ Ĩ(A∗ ⊗ V ) is tautologically isomorphic to A∗ ⊗ V . This isomorphism
extends by exactness to all finitely presented comodules.

Proposition 4.10. Let M be a finite A∗(n)-comodule. Then

Ĩ(A∗ ⊗A∗(n) M) ≈ A∗ ⊗A∗(n) Σa(n)M̌

as left comodules, where a(n) is the dimension of the “top cell” of A∗(n).

Proof. There is an exact sequence

0→M → A∗(n)⊗ V (aij)−−−→ A∗(n)⊗W

of A∗(n)-comodules, where aij ∈ A∗(n). After applying vector space duals we can
identify the resulting sequence with

0← Σ−a(n)M̌ ← A∗(n)⊗ V̌ (χaji)←−−−− A∗(n)⊗ W̌

by “Poincaré duality” of A∗(n) [12, Ch. 12.2]. The result follows from (4.7) after
extending up to A∗.

5. Brown-Comenetz duality

Recall that the functor

X 7→ hom(π0X,Q/Z)

is a generalized cohomology theory satisfying the wedge axiom, and hence is repre-
sented by a spectrum I. We write IY = F(Y, I) for the function spectrum, whence
IY is the spectrum representing the functor

X 7→ IY 0(X) = hom(Y0X,Q/Z).

The spectrum IY is called the Brown-Comenetz dual of Y .
We writeDX ≈ F(X,S0) for the Spanier-Whitehead dual ofX . Note that ifX is

any spectrum and F is a finite complex, then the natural map IX∧DF → I(X∧F )
is an equivalence.

There is a natural double-dual map X → IIX . If Y is a spectrum such that
each homotopy group πkY is finite, then Y ≈ IIY via this map. Thus, given such
a Y and given any spectrum X , there is a natural isomorphism

[X,Y ] ≈ [IY, IX ].
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5.1. Eilenberg-Mac Lane spectra. Let H ≈ HFp denote the mod p Eilenberg-
Mac Lane spectrum. Then IH ≈ H. In fact, by the universal coefficient theorem,

IH∗X ≈ hom(H∗X,Q/Z) ≈ hom(H∗X, Fp ) ≈ H∗X.

Lemma 5.2. Under the above identification the map

I : [H,H]∗ → [IH, IH]∗ ≈ [H,H]∗
sends a ∈ A∗ to χa.

Proof. This is [3, Thm. 1.9(d)].

More generally, let V denote a finite dimensional graded Fp -vector space, and
let V̌ = hom(V, Fp) denote its vector space dual. Let HV denote the generalized
Eilenberg-Mac Lane spectrum with π∗HV = V , whence HV∗X ≈ H∗X ⊗ V .

Proposition 5.3. There is an equivalence IHV ≈ HV̌ , and we have isomorphisms

H∗(IHV ) ≈ J̃(H∗HV )

of A∗-modules and
H∗(IHV ) ≈ Ĩ(H∗HV )

of A∗-comodules which are natural in HV .

Proof. This is immediate from (4.6) and (5.2); alternatively, it follows from [3,
Thm. 1.3].

5.4. Algebraic approximation. We note that the functor Ĩ of Section 4 serves as
an algebraic “approximation” to H∗IX , at least when H∗X has finitely presented
homology.

Proposition 5.5. For each spectrum X with finitely presented homology, there is
a map

ιX : Ĩ(H∗X)→ H∗IX

which is natural in X. Furthermore, this map is an isomorphism when π∗X is
finite.

Compare with [3, Thm. 1.13].

Proof. Given X we can choose an Adams resolution

X → HV0 → HV1 → . . . ,

in which V0 and V1 are finite dimensional vector spaces, and the sequence

0→ H∗X → H∗HV0 → H∗HV1

is exact. Applying I to the first diagram gives maps

IX ← HV̌0 ← HV̌1

and a sequence
H∗IX ← Ĩ(H∗HV0)← Ĩ(H∗HV1),

not necessarily exact. We let ιX be the induced map

ι : Ĩ(H∗X) = Cok
(
Ĩ(H∗HV1)→ Ĩ(H∗HV0)

)
→ H∗IX.

To see that ιX is independent of the choice of resolution and is natural, use a
map between Adams resolutions.
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The map ι is by construction an isomorphism for X = HFp . By the exact-
ness property of (4.9), we see that ιX is an isomorphism for any X in the thick
subcategory generated by HFp , which are precisely the X with finite homotopy.

6. Geometric realization of Tate cohomology

In this section we note that one can construct for each fp-spectrum a Z-indexed
Adams tower; this is a tower which extends both above and below X , whose layers
are finite mod p generalized Eilenberg-Mac Lane spectra, and which leads to a
spectral sequence whose E2-term is the Tate cohomology of H∗X . We give several
constructions, starting with the most general.

6.1. Construction of the tower.

Lemma 6.2. Let X be an fp-spectrum. Then

[H,X ]∗ ≈ homA∗(A∗,H∗X) ≈ J̃(H∗X).

Proof. Choose an fp-Adams tower {Xs} for X . Then there is a spectral sequence
Es,t1 = [H,HVs]t =⇒ [H,X ]t−s. We claim that

1. Es,t2 ≈ 0 for s > 0, so that E0,t
2 ≈ E∗,t∞ , and

2. E0,t
2 ≈ homA∗(A∗,H∗X).

Since X is connective and p-complete, the first claim implies that the spectral
sequence converges, and thus E0,t

2 ≈ [H,X ]t.
To prove the claim, recall that the resolution 0 → H∗X → H∗HVs is extended

up from a resolution 0→M → C(s) of A∗(n)-modules. Now

[H,HVs]∗ ≈ homA∗(A∗, A∗ ⊗A∗(n) C(s)) ≈ homA∗(n)(A∗, C(s)).

Since as an A∗(n)-comodule A∗ ≈ A∗(n)⊗ A∗//A∗(n) we see that A∗ is projective
as an A∗(n)-comodule, and thus the sequence

0→ homA∗(A∗,H∗X)→ homA∗(A∗,H∗HV•)

is exact as desired.

Thus, given an fp-spectrum X , we may construct a tower “realizing” the Tate
cohomology by constructing fp-spectra X−s for s ≥ 0 inductively as follows. First,
let X0 = X . Since H∗X−s ≈ A∗ ⊗A∗(n) M(−s) for some finite module M(−s), we
can choose a surjection C(−s − 1) → M(−s) from a free A∗(n)-comodule. This
may be extended to a surjection A∗ ⊗A∗(n) C(−s− 1)→ A∗ ⊗A∗(n) M(−s), which
in turn by the above lemma is realized by a map of spectra ΣsHV−s−1 → X−s. If
we take the cofiber

ΣsHV−s−1 → X−s → X−s−1

we get another fp-spectrum X−s−1; iteration produces an infinite sequence . . . →
X−s → X−s−1 → . . . . If we put this sequence together with an fp-Adams tower
for X , we get a tower {Xs}s∈Z, which we call a Z-indexed Adams tower for X .

Note that given a map f : X → Y of fp-spectra and given Z-indexed Adams
towers {Xs} and {Ys}, we can extend f to a map of towers, by the “dual” of the
usual argument, using (6.2). In particular, given any two Z-indexed Adams towers
for X we can produce a map between them.

For such a tower, let X̂ = hocolims→∞X−s. There is a full-plane Adams-type
spectral sequence Es,t2 ≈ Hs,t

Tate(H∗X) =⇒ πt−sX̂ approximating the homotopy of
X̂, where Hs,t

Tate is the Tate cohomology of (2.5).
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Given such a tower {Xs}, write Xq
p = cof(Xq+1 → Xp) for −∞ < p ≤ q < ∞.

Then let X−1
∞ = cof(X → X̂) ≈ hocolims→∞X

−1
−s . A straightforward convergence

argument shows that the homotopy spectral sequence of this colimit converges, and
hence X−1

∞ does not depend on the choice of the Z-indexed tower.
The above remarks are summarized in the following proposition.

Proposition 6.3.

1. For each fp-spectrum X there exists a Z-indexed Adams tower {Xs}.
2. Given Z-indexed Adams towers {Xs} and {Ys} for X and Y , and a map
f : X → Y , there exists a map {fs : Xs → Ys} of towers which extends f .

3. The colimit X̂ = hocolims→∞X−s of a Z-indexed Adams tower depends only
on X, and not on the choice of tower.

6.4. Alternate construction of the tower. Let X be an fp-spectrum, and let
F be a finite complex such that H∗(X) ⊗H∗(F ) is a free A∗-comodule. Suppose
also a map S0 → F which is injective on homology. Such an F always exists; if
H∗X is an extended A∗(n)-comodule, let F be a Mitchell complex of type n as in
(3.1), and S0 → F the inclusion of a bottom cell.

Form a fiber sequence F̄ → S0 → F , so that by Spanier-Whitehead duality we
get a dual fiber sequence DF → S0 → DF̄ . We obtain a Z-indexed Adams tower
with

Xs =

{
X ∧ F̄ (s) if s ≥ 0
X ∧ (DF̄ )(−s) if s < 0,

where the maps in the tower are induced by fiber sequencesX∧F̄ (s+1) → X∧F̄ (s) →
X ∧ F̄ (s) ∧ F and X ∧DF̄ (s) ∧DF → X ∧DF̄ (s) → X ∧DF̄ (s+1).

In those cases when there actually exists a complex F with H∗F ≈ A∗(n), and
H∗X is an extended A∗(n)-module, then this complex realizes the unbounded chain
complex obtained by gluing together the bar complex for M and the co-bar complex
for M as an A∗(n)-comodule.

6.5. An explicit construction for bo. Recall that H∗bo ≈ A∗/A∗(Sq1, Sq2).
Consider the minimal Adams tower {bos} for bo at p = 2; write H∗bos ≈ A∗⊗A∗(1)
M(s).

Let R(n) denote the cofiber of Pn → S0 for n ≥ 0; thus R(0) ≈ S0. Recall from
[9] that

M(4s) ≈ H∗R(8s).

We define a map R(8s + 8) → R(8s) as follows. Let p : R(8s + 8) → ΣP 8s+8
8s+1

denote the pinch map obtained by taking the quotient of R(8s)→ R(8s+ 8). Then
p◦ (16) ∼ 0, where (16) is the degree 16 map on R(8s+8)→ R(8s+8), and so (16)
lifts to a map fs : R(8s + 8) → R(8s). The map fs has degree 16 on the bottom
cell.

Likewise, we may consider the Spanier-Whitehead dual map

f−s = Dfs−1 : DR(8s− 8)→ DR(8s).

This map has degree 16 on the top cell. Note that f−1 : S0 → DR(8s), so we can
put all the fs for s ∈ Z together into a Z-indexed tower

. . .
f2−→ R(16)

f1−→ R(8)
f0−→ R(0) ≈ S0 f−1−−→ DR(8)

f−2−−→ DR(16)
f−3−−→ . . . .
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Proposition 6.6. There is a Z-indexed Adams tower {bos} for bo with

bo4s ≈
{
bo ∧R(8s) if s ≥ 0,
bo ∧DR(−8s) if s < 0,

and the map bo4s+4 → bo4s is bo ∧ fs.

Proof. Set bo4s as above, and construct a the start of a minimal Adams tower
bo4s+3 → bo4s+2 → bo4s+1 → bo4s over bos. It is not hard to see that R(8s+ 8)→
bo∧R(8s) ≈ bo4s lifts to bo4s+3, so that we can extend to a map bo∧R(8s+ 8)→
bo4s+3; likewise, DR(8s − 8) → bo ∧ DR(8s) ≈ bo−4s lifts to bo−4s+3, so we can
extend to a map bo ∧ DR(8s − 8) → bo−4s+3. The resulting tower is an Adams
tower.

Here is a chart which presents the Adams E2-term for bo ∧DR(16).
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A chart for Exts,tA(1)(H
∗(DR(16)),Z/2) for s < 16.

7. Finite localization

There exists a functor Lfn and natural map X → LfnX , called finite localiza-
tion. It is Bousfield localization with respect to the wedge Tel(0) ∨ · · · ∨ Tel(n),
where Tel(k) denotes the vk-telescope on some chosen type k finite complex. The
functor Lfn is characterized by the following properties [11].

1. The fiber CfnX = fib(X → LfnX) is a homotopy colimit of some diagram of
type-(n+ 1) finite complexes.

2. There are no essential maps from a type (n+ 1) finite complex to LfnX (i.e.,
LfnX is Lfn-local).

3. LfnX is smashing; i.e., LfnX ≈ X ∧ LfnS0.
Note also that 1 and 2 imply that LfnX ≈ X if X is Lfn-local. Also, if X is a type
n finite complex, then LfnX ≈ v−1X , where v : ΣdX → X is a vn-self map of X .

Theorem 7.1. Let X be an fp-spectrum with fptype(X) ≤ n, and let {Xs} be a
Z-indexed Adams tower for X, with colimit X̂. Then LfnX ≈ X̂.

Proof. Consider the map i : X → X̂. It suffices to show that
1. Lfn(i) is an equivalence, and
2. X̂ is Lfn-local.
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Claim 1 follows immediately from the fact thatLfnHFp ≈ ∗ and that Lfn is smashing,
since X̂ is obtained from X by attaching mod p Eilenberg-Mac Lane spectra.

To prove claim 2, we must show that X̂ admits no essential maps from a type-
(n + 1) finite complex F , or equivalently, that X̂ ∧ F ≈ ∗ for any such complex.
This follows from the following:

3. For any finite complex F , {Xs ∧ F} is a Z-indexed Adams tower for X ∧ F ,
and X̂ ∧ F ≈ hocolimX−s ∧ F .

4. If Y is an fp-spectrum with π∗Y finite, then Ŷ ≈ ∗ for any Z-indexed Adams
tower for Y .

The proof of claim 3 is straightforward.
To prove claim 4, apply Brown-Comenetz duality to the sequence

Y = Y0 → Y−1 → Y−2 → . . .→ Ŷ .

This produces a tower

IŶ → . . .→ IY−2 → IY−1 → IY0 = IY

which is easily seen to be an Adams tower for IY by (5.5). Since IY is connective
and p-complete and π∗IY is finite, its Adams spectral sequence converges, and
IŶ ≈ ∗, whence Ŷ ≈ ∗.

7.2. Relation between Lfn and Ln. Let X → LnX denote Bousfield localization
with respect to K(0) ∨ · · · ∨K(n). There is a natural map tn : LfnX → LnX ; this
map is an equivalence for X ≈ S0, and hence for all X , if and only if the Telescope
Conjecture holds for all m ≤ n. This conjecture is true for n = 0 and n = 1, and is
believed to be false for n ≥ 2.

It is reasonable to ask whether tn is an equivalence when X is an fp-spectrum.
We note that tn is an equivalence in the following cases, which include all cases we
know of.

1. Since BP 〈n〉 is a BP -module spectrum, one can compute LnBP 〈n〉 using the
chromatic tower method of [14, Sec. 6]. (We would like to thank Hal Sadofsky
for pointing this out to us.) This calculation shows in particular that the fiber
of BP 〈n〉 → LnBP 〈n〉 is coconnective with torsion homotopy; thus the fiber
is killed by Lfn, and hence tn is an equivalence on LnBP 〈n〉, and is in fact an
equivalence on the thick subcategory of C generated by BP 〈n〉.

2. For any fp-spectrum X obtained by the procedure of the proof of (3.5) the
map tn : LfnX → LnX is an equivalence, since by construction the fiber of
X → LnX is coconnective with torsion homotopy.

We make the following conjecture.

Conjecture 7.3. The map tn : LfnX → LnX is an equivalence for all fp-spectra
X.

This conjecture is of interest, because it would give information on how badly
the Telescope Conjecture fails, assuming it does fail. Namely, suppose F is a type
n finite complex and v−1F is its vn-telescope; then if the Telescope Conjecture fails
for n and Conjecture (7.3) holds, it follows that πk(v−1F ) is an infinite group for
some k ∈ Z, whereas πkLnF is finite for all k. To see this, we argue as follows;
if each πk(v−1F ) were a finite group, then the proof of (3.5) would apply to show
that there exists an fp-spectrum X with LfnX ≈ v−1F . (We could take X to
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be a connective cover of v−1F , for example.) However, Conjecture (7.3) would
then imply that v−1F ≈ LnX ≈ LnF , contradicting the failure of the Telescope
Conjecture.

Conjecture (7.3) also would imply, using (8.9) of the next section, that the two
conjectures (3.8) and (3.9) discussed in section 3 are in fact equivalent statements.

8. Duality

8.1. Duality for fp-spectra of type less than n. Let

WnX = ICfnX,

where Cfn = fib(X → LfnX). Thus Wn is a contravariant functor from spectra to
spectra. Since Lfn is smashing,

WnX ≈ F(X ∧ CfnS0, IS0) ≈ F(X,WnS
0).

That is, WnS
0 is a “dualizing complex” for Wn. Furthermore, there is a natural

map X →WnWnX ; this map is adjoint to the evaluation map X ∧F(X,WnS
0)→

WnS
0.

Note that Wn vanishes on Lfn-local spectra. Also, if π∗X is finite, then LfnX ≈ ∗
and we have WnX ≈ IX .

Recall that Cn denotes the homotopy category of fp-spectra with fp-type ≤ n.

Theorem 8.2. Let X be an object in Cn.
1. There is a natural isomorphism H∗WnX ≈ Ĩ(H∗X).
2. WnX is in Cn.
3. The natural map X →WnWnX is an equivalence.

From this we obtain the following.

Corollary 8.3. The functor Wn restricts to a functor Wn : Cop
n → Cn, which is an

equivalence of categories.

Proof. The corollary follows from the fact that the functor Wn is “self-adjoint”;
that is,

Wn : Sop
� S : (Wn)op

is a pair of adjoint functors, where S represents the homotopy category of spectra.
Part 2 of (8.2) says that Wn carries Cop

n into Cn, and part 3 says that the restriction
of Wn to Cn gives an adjoint equivalence Wn : Cop

n � Cn : (Wn)op of categories.

Proof of Theorem 8.2. If X is an fp-spectrum, choose a Z-indexed Adams tower
{Xs}, and as in (6.1) write Xp

q = cof(Xp+1 → Xq). Then

CfnX ≈ Σ−1 hocolim
s→∞

X−1
−s

by (7.1), and thus

WnX ≈ Σ
(

holim
s→∞

IX−1
−s

)
.(8.4)

Write H∗X ≈ A∗⊗A∗(n)M . We can construct the bottom part of the Z-indexed
tower to realize any projective resolution of M by finite A∗(n)-modules, e.g., by
the resolution dual to the minimal resolution 0→ M̌ → C• of M̌ by finite A∗(n)-
modules. Then (8.4) immediately implies that WnX is connective and p-complete,
since the tower {I(X−1

−s )}s≥1 must necessarily be the tower associated with an
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Adams tower for WnX which realizes C•, and so the connectivity of I(X−1
−s ) is

bounded below by a fixed N for all s ≥ 1.
Note that for any Y we have that HFp ∧ LfnY ≈ ∗, whence the map H∗CfnY →

H∗Y is an isomorphism, so that there exists by (5.5) a natural comparison map

ιn(Y ) : Ĩ(H∗Y ) ∼−→ Ĩ(H∗CfnY )→ H∗WnY.

We want to show that ιn(X) is an isomorphism.
Since X has a Z-indexed tower, there is a sequence

. . .→ HV−2 → HV−1 → X

which induces an exact sequence

H∗HV−2 → H∗HV−1 → H∗X → 0

on homology. Applying Wn to this sequence gives a sequence

WnX →WnHV−1 →WnHV−2 → . . .

which corresponds to an Adams resolution for WnX and hence induces an exact
sequence

0→ H∗WnX → H∗WnHV−1 → H∗WnHV−2.

It is clear that the comparison maps ιn(HV−s) are isomorphisms, and so ιn(X)
is an isomorphism, since Ĩ is exact. Thus we have proved parts 1 and 2 of the
proposition.

Part 3 follows from parts 1 and 2, together with (8.7), to be proved below.

Remark 8.5. If X is a spectrum which might not be p-complete, and Xp denotes its
p-completion, then one can show via an arithmetic square argument that CfnX ≈
CfnXp, and hence WnX ≈ WnXp. In particular, if Xp is an fp-spectrum, we may
conclude that WnWnX ≈ Xp.

We still owe the reader one more fact.

Proposition 8.6. Suppose X and WnX have finitely presented homology. Then
there is a commutative square

Ĩ(H∗WnX)
ιn(WnX)//

''NN
NNN

NNN
NNN

N
Ĩιn(X)
��

H∗WnWnX

ĨĨ(H∗X) H∗X
∼oo

OO

Corollary 8.7. If X and WnX have finitely presented homology and the maps

ιn(X) : Ĩ(H∗X)→ H∗WnX, and ιn(WnX) : Ĩ(H∗WnX)→ H∗WnWnX

are isomorphisms, then the the map X → WnWnX induces an isomorphism in
homology.

Proof of Proposition 8.6. Choose resolutions X → HC0 → HC1 and WnX →
HD0 → HD1. This leads to a sequence

HĎ1 → HĎ0 →WnWnX → HC0 → HC1.

The diagonal map in the diagram is the induced map

Cok
(
H∗HĎ1 → H∗HĎ0

)
→ Ker (H∗HC0 → H∗HC1) .

It is straightforward to check commutativity of the diagram.
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8.8. A finiteness result.

Proposition 8.9. Let X be an fp-spectrum with fptype(X) = n, and let Y = LfnX
be its finite localization. Then for each k ∈ Z the homotopy group πkY has the form

πkY ≈ Fk ⊕Z⊕akp ⊕ (Q/Z(p))⊕bk ⊕ Q⊕ckp ,

where Fk is a finite p-group, ak = 0 = ck for all sufficiently small k � 0, and
bk = 0 = ck for all sufficiently large k � 0.

Proof. There is a fiber sequence CfnX → X → LfnX , and the Brown-Comenetz
dual WnX of CfnX is an fp-spectrum by (8.2). Thus X is connective with πkX ≈
Fk⊕Zmkp , and CfnX is coconnective with πkCfnX ≈ F ′k⊕(Q/Z(p))nk . The image and
coimage of the connecting map πkCfnX → πkX can only be a finite torsion group;
thus, to prove the result for πkLfnX we need to show that, in a group extension of
the form

0→ F ⊕Zmp →M → F ′ ⊕ (Q/Z(p))n → 0,
where F and F ′ are finite p-groups, that M is as described in the statement of the
proposition.

It is easy to reduce to the case when F = 0 = F ′. Then extensions are classified
by elements of Ext((Q/Z(p))n,Zmp ) ≈ hom(Znp,Z

m
p ); if A ∈ hom(Znp,Z

m
p ) classifies

the extension then

M ≈ Cok
(
Znp

(A,I)−−−→ Zmp ⊕ Qnp
)

where I : Znp → Qnp is the standard inclusion. It follows that M ≈ Zmp / imA ⊕
Qnp / kerA; this can be shown by choosing a map B : Zmp → Qnp such that (I −
BA) : Znp → Qnp projects to the kernel of A ⊗ Q, in which case there is an exact
sequence

0→ Znp
(A,I)−−−→ Zmp ⊕ Qnp

(x,y)→(x,y−Bx)−−−−−−−−−−−→ Zmp / imA⊕ Qnp / kerA→ 0

which realizes the splitting of M . Now the result follows from the fact that
Zmp / imA ≈ F⊕Zap and Qnp / kerA ≈ (Q/Z(p))b⊕Qcp , where F is a finite p-group.

8.10. Duality for fp-spectra. Recall that there exist natural transformations
Lfn+1X → LfnX , and hence natural transformations WnX →Wn+1X . We define

WX = hocolim
n→∞

WnX.

If X is an fp-spectrum with fptype(X) = n, then (7.1) shows that LfmX ≈ LfnX
for m ≥ n, and thus WmX ≈ WnX for m ≥ n. This, together with (8.3) and the
fact that C =

⋃
n Cn is the homotopy category of all fp-spectra, gives

Theorem 8.11. The functor W induces an equivalence of categories W : Cop → C,
and H∗WX ≈ Ĩ(H∗X) for all X in C.

9. Calculations

In this section we compute WX in several cases, and thus implicitly compute
LfnX (and LnX , by (7.2)) for sufficiently large n.

Lemma 9.1. If X is a ring spectrum and Y is an X-module spectrum, then WnY
is also an X-module spectrum.

Proof. This is a formal consequence of the fact that WnY ≈ F(Y,WnS
0).
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Proposition 9.2. If X is an fp-spectrum which is a ring spectrum, H∗X is self-
dual as a finitely-presented comodule (i.e., Ĩ(H∗X) ≈ ΣdH∗X for some d), and
H∗X does not split over the Steenrod algebra, then WX ≈ ΣdX.

Proof. Choose a map Sd → WX which hits the bottom homology class, dual to
the unit in H∗X . By (9.1) this map extends to a map ΣdX → WX of X-module
spectra, and this map is necessarily an isomorphism on mod p homology, and hence
an equivalence.

Corollary 9.3. We have that
1. Wk(n) ≈ Σ2pn−1k(n),
2. WBP 〈n〉 ≈ Σe(n)BP 〈n〉, where e(n) = 2 p

n+1−1
p−1 − (n+ 1),

3. Wbu ≈ Σ4bu (at all primes),
4. Wbo ≈ Σ6bo (at all primes), and
5. Weo2 ≈ Σ23eo2 at p = 2 and at p = 3.

Proof. The only case which needs comment is 5. In this case it can be derived from
the following facts [5]. At p = 2, eo2 ∧ F ≈ BP 〈2〉, where F is a certain finite
complex with H∗F ≈ DA∗(1), the “double” of A∗(1). At p = 3, eo2∧ (S0∪α e4∪2α
e8) ≈ BP 〈2〉 ∨ Σ8BP 〈2〉.

Remark 9.4. In each of the above examples, we can read off π∗LnX from our knowl-
edge of the homotopy of X . In particular, in cases 2–5 there is a wide “gap” be-
tween the first copy of Zp and the last copy of Q/Z(p) in the homotopy of LnX ; if
WX ≈ ΣdX , then

πsX ≈


Zp if s = 0,
0 if 1− d < s < 0, and
Q/Z(p) if s = 1− d.

There is a convenient heuristic for reading off the expected size of the “gap” in
π∗LnX for many ring spectra of the above type. If π∗X⊗Q ≈ Qp [x1, . . . , xn], then
the size of the gap is

∑n
i=1(|xi|+1). For example, π∗eo2⊗Q ≈ Qp [x8, x12] at p = 2

or 3, so the gap is (8 + 1) + (12 + 1) = 22. For BP 〈n〉 the gap is the same as the
dimension of the Toda complex V (n), should it exist.

Recall from (4.10) that if H∗X ≈ A∗⊗A∗(n)M , then Ĩ(H∗X) ≈ A∗⊗A∗(n) ΣdM̌ ,
where d is the dimension of the “top cell” of A∗(n).

Proposition 9.5. Let Jp denote the connective image-of-J spectrum completed at
the prime p.

1. For p odd, WJp ≈ Σ3Jp.
2. For p = 2, there is a cofiber sequence Σ3HF2 → J2 ∧ (S0 ∪2 e

1 ∪η e3)→WJ2.

Proof. At an odd prime, Jp is the fiber of any map BP 〈1〉 → ΣqBP 〈1〉, q = 2(p−1),
which sends the cohomology generator ι ∈ HqΣqBP 〈1〉 to P 1ι ∈ HqBP 〈1〉. At
p = 2, J2 is the fiber of any map bo→ bspin which sends the cohomology generator
ιbspin ∈ H4bspin to Sq4ιbo ∈ H4bo [10]. In either case, the map in cohomology is
induced from a map of A∗(2)-modules.

We leave the odd prime case to the reader. Suppose p = 2, and let F = S0 ∪2
e1 ∪η e3. Since bspin ≈ Σ7bo ∧ DF and H∗(F ∧ DF ) is a direct sum over the
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Steenrod algebra of a spherical class in dimension 0 with a free A∗(1) module on
one generator, we see that J ∧ F fits in a fiber sequence

J ∧ F → bo ∧ F → Σ7bo ∨ Σ4HF2 .

We can kill the copy of HF2 by taking the evident cofiber Σ3HF2 → J ∧ F → C,
so that we obtain a cofiber sequence

C → bo ∧ F → Σ7bo.

On applying W we get a fiber sequence

Σ−1bo→ Σ6bo ∧DF →WC → bo
f−→ Σ7bo ∧DF.

We can compute the action on f on cohomology, since by (4.10) it is induced from
a map of A∗(2)-modules. The computation, which is straightforward, shows that
the bottom class of Σ7bo ∧DF hits Sq4ιbo ∈ H4bo, and thus WC ≈ J .

Corollary 9.6 (Hopkins).

I(L1S
0) ≈ L1(S−1 ∪2 e

0 ∪η e2).
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