CLASSIFYING SPACES FOR 1-TRUNCATED COMPACT LIE GROUPS

CHARLES REZK

ABSTRACT. A 1l-truncated compact Lie group is any extension of a finite group by a torus. In
this note we compute the homotopy types of Map(BG, BH) and (BgH)® for compact Lie groups
G and H with H 1-truncated, showing that they are computed entirely in terms of spaces of
homomorphisms from G to H. These results generalize the well-known case when H is finite, and
the case of H compact abelian due to Lashof, May, and Segal.

1. INTRODUCTION

By a 1-truncated compact Lie group H, we mean one whose homotopy groups vanish in
dimensions 2 and greater. Equivalently, H is a compact Lie group with identity component Hy a
torus (isomorphic to some U(1)9); i.e., an extension of a finite group by a torus.

The class of 1-truncated compact Lie groups includes (i) all finite groups, and (ii) all compact
abelian Lie groups, both of which are included in the class (iii) all groups which are isomorphic to a
product of a compact abelian Lie group with a finite group, or equivalently a product of a torus
with a finite group.

The goal of this paper is to extend certain results, which were already known for finite groups,
compact abelian Lie groups, or products thereof, to all 1-truncated compact Lie groups.

We write Hom (G, H) for the space of continuous homomorphisms, equipped with the compact-
open topology. Our first theorem relates this to the space of based maps between classifying
spaces.

1.1. Theorem. For G, H compact Lie groups with H 1-truncated, the evident map
B: Hom(G, H) — Map, (BG, BH)
s a weak equivalence.
Using this, we will derive an unbased variant.
1.2. Theorem. For G, H compact Lie groups with H 1-truncated, there is a weak equivalence
Hom(G,H) xg EH — Map(BG, BH).
Here H acts on Hom(G, H) by conjugation: h-¢ = h¢h™!.

When H is discrete, these are well-known and classical results. The case of H an abelian compact
Lie group is proved in [LMS83[; both the finite and compact abelian Lie cases are discussed in
[May90).

1.3. Remark. For G and H compact, there is a homeomorphism ([7.1)

Hom(G,H) ~ H H/Cr(¢)
[¢p: G—H]
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where the coproduct is over conjugacy classes of homomorphisms, and Cp(¢) is the centralizer of
¢(G) in H. When H is a 1-truncated compact Lie group, we see from (1.1)) that Map, (BG, BH) is
also weakly equivalent to this coproduct, and from ([1.2]) that there is a weak equivalence

Map(BG,BH)~ [[ BCu(4).
[¢: G—H]

Finally, we will give a description of the fixed points of the equivariant classifying space BgH,
which represents G-equivariant H-principal bundles, in the case that G and H are compact Lie and
H is 1-truncated.

1.4. Theorem. For G, H compact Lie groups with H 1-truncated, the map
7*: BaH — Map(EG, BoH)
induced by restriction along m: EG — * is a G-equivariant weak equivalence.

The case of H finite or compact abelian is proved in [May90].

1.5. Remark. For any closed subgroup G’ < G, taking G’ fixed points gives rise to a map
(BaH)® — Map(EG, BeH)® < Map(EG, BH)®' ~ Map(BG', BH),

and (1.4) amounts to saying that for any G’ this map is a weak equivalence. It is standard
[LM86, Theorem 10] that, for arbitrary compact G and H, (BgH) is weakly equivalent to
s: ¢ BCr(¢), while if H is also 1-truncated, (1.2) and (L.3) imply that Map(BG', BH) is
also weakly equivalent to the same coproduct, thus giving an abstract weak equivalence (BgH )G/ ~
Map(BG’, BH). The point of (1.4]) is to show that the map 7* exhibits this equivalence.

The map of in a certain sense classifies the formation of the G-Borel quotient. That is, given
a G-equivariant map f: X — BgH classifying a G-equivariant principal H-bundle P — X, the G-
equivariant map 7 f: X — Map(EG, BgH) is adjoint to a non-equivariant map X xqg EG — BgH
which classifies the bundle P x¢ EG — X X EG; see [May90]. As a consequence of the theories of
classifying spaces, we obtain the following.

1.6. Corollary. Let G and H be compact Lie groups with H 1-truncated. Then for a paracompact
G-space X, formation of G-Borel quotient gives rise to a bijection between (i) equivalence classes of
G-equivariant principal H-bundles over X, and (ii) equivalence classes of principal H-bundles over
X Xa EG.

1.7. Organization of the paper. The proof of is the probably the most interesting part
of the paper. It is carried out in § The key ingredient is the use of the nerve N(H,V) of
the “exponential crossed module” of the 1-truncated compact Lie group H. We first show
that the simplicial space N(H, V) is a Reedy fibrant model for the usual simplicial nerve NH of H
, and so can be used to compute maps BG to BH, in terms of maps of simplicial spaces from
NG to N(H,V). The proof is completed ( by showing that, in a certain sense, the difference
between Hom(G, H) and the space Mapr,,(NG, N(H,V)) of maps between simplicial spaces is
measured precisely by the continuous 2-cocycles on G with values in V', modulo boundaries of
1-cocycles. Because G is compact, Haar measure gives a contracting homotopy on the complex
of continuous chains on GG. A sketch by the author of this proof originally appeared as an answer to
a question on the site MathOverﬂov\ﬂ

Our approach gives a uniform proof of for all 1-truncated compact Lie groups H; furthermore,
even in the case of abelian H, it is somewhat more direct than the one given in [LMS83].

We derived the unbased theorem from the based version in by comparing associated
fibrations over BH.

1“Equivariant classifying spaces from classifying spaces”, http://mathoverflow.net/q/223546.
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The result on equivariant classifying spaces is proved in The proof relies on an explicit
model, built as the nerve of a certain topological category, of the restriction of the universal
(G, H)-bundle to the fixed point subspace (BgH)% C BgH. The explicit model we use appears to
be essentially of the type described in [GMM12].

In we give for the convenience of the reader a proof of the identification of Hom(G, H) as

mentioned in ((1.3]).

1.8. Acknowledgments. I thank Peter May for comments on a draft of this paper.

1.9. Conventions. In this paper, we write Top for the category of compactly generated weak
Hausdorff spaces (CGWH), the standard convenient category of spaces. This category is cartesian
closed, and we write Map(X,Y) for the internal function object, i.e., continuous maps with the
k-ification of the compact-open topology. We make use of the “usual” model structure on Top,
in which weak equivalences are weak equivalences on homotopy groups, and fibrations are Serre
fibrations.

2. NERVE OF A TOPOLOGICAL CROSSED MODULE

2.1. Crossed modules. Recall that a crossed module consists of

e groups H and V,

e a homomorphism e: V — H,

e a homomorphism a: H — Aut(V),

e such that (i) e(a(h)(v)) = he(v)h™! and (ii) a(e(v))(v') = vv'v=! for h € H, v,v' € V.
A topological crossed module is one in which V' and H are topological groups, and € and « are
continuous. I'll typically write (H, V') for the crossed module, leaving € and « understood. Note
that we will often consider crossed modules in which V' is an abelian group, in which case we will
switch to additive notation for V', though not for H.

2.2. Exzample. Given any group H, there is a unique crossed module which we will denote (H,0), in
which 0 is the trivial group.

2.3. Example (Exponential crossed module). The following example is the crucial one for this paper.
Suppose H is a 1-truncated compact Lie group. We set
e V :=T.H, the Lie algebra of H, which is a group under addition of vectors;
e c:=exp: V — H, the exponential map; this is a homomorphism since Hy is abelian;
e a:=ad: H— GL(V), the adjoint action.
We typically write the group law of V' additively, so the identities for the crossed module structure
become
exp(ad(h)(v)) = hexp(v)h ™1, ad(exp(v))(v') = v+ —v=1".
The following features of this case will be significant:
(1) a =ad: H — GL(V) factors through the quotient group H/Hy,
(2) e =exp: V — H is a covering map,
(3) the underlying space of V' is contractible.
2.4. Nerve of a crossed module. The nerve of a topological crossed module N(H,V) is the
simplicial space defined as follows; except for the topology, this is as in [Bro99, §3.1]. The space
N(H,V), in degree n is the space of tuples
((hijdoi<jcns (Vigko<icj<ken)s  hij € Hy  wvgp €V,
satisfying the identities
(1) h” = e and Vijj = Vij5 = € for all ¢ < j,
(2) hz‘k = E(Uz’jk)hijhjk for all ¢ S] < k,
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(3) Uz‘kévz’jk = Uijg a(hij)(vjkg) fOI' all 7 S] S k S E
The action of simplicial operators ¢: [n] — [m] is the evident one: (6h)i; = hs(;)s5(;) and (0v), =

V5(i),6(7),6(k)- A standard argument shows that as a space N(H,V), ~ H" x V(g), e.g., via the
projection to coordinates ho;, 1 <4 < n and vgi;, 1 <i < j < n.
Note that N(H,V)o = %, i.e., N(H,V) is a reduced simplicial space.

2.5. Example. The nerve of N(H,0) is precisely the usual nerve of the group H; we write N(H) :=
N(H,0).

2.6. Simplicial spaces and the Reedy model structure. We write sTop for the category of
simplicial spaces, i.e., functors A°? — Top. We are going to use the Reedy model structure on
sTop. We will need to use the following features of this model structure:
(1) Weak equivalences f: X — Y in sTop are precisely the levelwise weak equivalences, i.e.,
fn: X, — Y, is a weak equivalence for all n > 0.
(2) An object X is cofibrant (Reedy cofibrant) if and only the latching space inclusions
Yn: Ln X — X, are cofibrations in Top.
(3) An object Y is fibrant (Reedy fibrant) if and only if the matching space projections
On: Y, — M,Y are fibrations in Top.
(4) The model structure is topological. In particular, if X is a cofibrant simplicial space and
Y — Y’ is a weak equivalence between fibrant simplicial spaces, then Mapp.,(X,Y) —
MapSTop(X ,Y') is a weak equivalence of spaces.

We will need to examine latching and matching spaces in a bit more detail.

2.7. Latching and matching spaces. We recall the notion of latching and matching spaces. For
simplicial spaces X : A°? — Top and all n > 0, we have natural maps of spaces

L,X 2% X, 2o ML X
where

LnX = COlim(AC/)p X,

[n])<n

X, Mn = lim(AEIL)]/)<

n

called the latching and matching spaces of X.
2.8. Latching spaces for the nerve of a group.

2.9. Proposition. Let G be a topological group, and NG € sTop its nerve. Then for each n > 0,
the latching inclusion vn: Ln,(NG) — (NG)y, is isomorphic to the inclusion

{(gla"‘7gn) ’ E'Z, g’L = e} — Gn
In particular, NG is Reedy cofibrant if {e} — G is a cofibration in Top.

Proof. Standard. O

2.10. Matching spaces for the nerve of a crossed module. We describe the matching projec-
tions for the nerve of a topological crossed module.

2.11. Proposition. Consider N := N(H,V') the nerve of a topological crossed module. We write
M, := M, N for its matching spaces.

(0) d0: No — My is the isomorphism of 1-point spaces.
(1) 61: N1 — My is the projection H — x.
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(2) Ms ~ H*3, and there is a pullback square

N2 7 V
52\[ J{e
My

(ho1,ho2,h12)—ho2hiy hyy
(3) There is a commutative diagram
N3 ———— {e}

|| ]

My —— Kere — {e}

L] ]

H*3 x 3 1% H

™ €

in which all squares are pullback squares, and 7 is given by
-1, —1
(hot, hi2, ha3, vo12, V013, V023, V123) — Vo23v012¢(ho1)(v123) " Vgys-
(>4) 0p: Ny — M, is an isomorphism for n > 4.

Proof. Straightforward. In (3), one shows directly that the right-hand lower square, bottom rectangle,
and left rectangle are pullbacks. O

Recall that a simplicial space X is Reedy fibrant if each of the maps d,: X, — M, X is a
fibration of spaces.

2.12. Corollary. If (H,V) is a topological crossed module such that € is a covering map, then
N(H,V) is Reedy fibrant.

Proof. Immediate using (2.11)). Note that the condition that e be a covering map in (2.11))(3) implies
that 03 is an open and closed embedding. ([l

In particular, (2.12)) applies to our main example ([2.3)).

3. MAPS BETWEEN REDUCED SIMPLICIAL SPACES

A simplicial space X € sTop is said to be reduced if Xy ~ *. We write sTop™? c sTop for the

full subcategory of reduced simplicial spaces. Note that reduced simplicial spaces are canonically
based, so that we may in fact regard sTop™? as a full subcategory of simplicial based spaces sTop,.

3.1. Realization of reduced simplicial spaces. We recall the geometric realization functor
|I—|| : sTop — Top, defined so that ||X|| is the coend of the functor A°® x A — Top given by
(Im], [n]) — X, x A", where A™ is the topological n-simplex.

3.2. Proposition. The restriction of the geometric realization functor to a functor |—|| : sTop™d —
Top, admits a right adjoint V: Top, — sTop™¢, defined by
(VY),, := Map, (A™/Sko A™,Y),

where Skg A™ C A" is the set of vertices of the simplex. The adjunction is compatible with the
topological enrichment, and so gives a natural homeomorphism

MapsTop(Xa VY) ~ Map*(HXH ) Y)
for X € sTop™ and Y € Top,.
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Proof. This is a straightforward consequence of the observation that for reduced simplicial spaces
X, || X]| is seen to be isomorphic to the coend (in Top,) of ([m], [n]) — X, A (A™/ Skg A™). O

We also note the following.
3.3. Proposition. For any Y € Top,, the simplicial space VY is Reedy fibrant.

Proof. The matching space projection has the form Map, (A™/ Skg A", Y) — Map, (0A™/ Skg A™,Y),
which is clearly a fibration. U

For a topological group H, we consider the classifying space BH := ||[NH]|.

3.4. Proposition. If H is a topological group with identity element a non-degenerate basepoint (i.e.,
{e} = H has the HEP), then the map

n: NH — V| NH| =VBH
given by the unit map of the adjunction of (3.2) is a levelwise weak equivalence of simplicial spaces.

Proof. In degree 0, n is the isomorphism of one-point spaces. In degree 1 it has the form
H = Map, (A!/{0,1}, | NH||) ~ QBH.

A standard argument (e.g., using the usual simplicial model for the universal fibration [May75])
shows that this is a weak equivalence.

For n > 2, we reduce to the n = 1 case using the fact that I,,/Skg A" — A"™/Sky A" is a
homotopy equivalence of pointed spaces, and thus

Map, (A"/ Sko A, [ NH|) = Map, (I,/ Sko A", | NH]|) ~ (QBG)*"

is a weak equivalence, where I,, C A" is the union of the edges with vertices {k — 1,k} for all
k=1,...,n. O

3.5. Map(X,N(H,V)) computes Map, (|| X||, BH). Now we fix a 1-truncated compact Lie group
H and the corresponding exponential crossed module (H, V') of . We have a map of reduced
simplicial spaces
NH Y N(H, V) x V||NH]|
in which ¢ is the evident inclusion NH = N(H,0) C N(H, V), and n the unit map of the adjunction
of . Observe that both ¢ and n are levelwise weak equivalences (¢ because V is contractible, n
54)

by (3.4)). Furthermore, both N(H,V) (2.12) and V ||[NH]|| (3.3) are Reedy fibrant.
Using the Reedy model structure on simplicial spaces, we can factor the above map as

(3.6) NH 2 (NH)Y Y N(H, V) < V|NH]|

so that (NH)/ is Reedy fibrant and j is a levelwise weak equivalence, whence ' and 7’ are also
levelwise weak equivalences.

3.7. Proposition. For X a Reedy cofibrant simplicial space with Xo = *, and (H,V') the exponential
crossed module of a 1-truncated compact Lie group H, we have that Mapyr,, (X, N(H,V)) is weakly
equivalent to Map, (||X||, V|[NH]||). Furthermore, t.: Mapgr,,(X, NH) — Mapgr,,(X, N(H,V))
is a weak equivalence of spaces if and only if n.: Mapgr,, (X, NH) — Mapyp,, (X, V[[NH|) is.

Proof. Straightforward using the factorization (3.6)), the fact that Reedy model structure is compat-
ible with the topological enrichment, and the adjunction (3.2]). O
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3.8. Corollary. If (H,V) is as above, and G is a topological group such that {e} — G is a cofibration,
then Map, (BG, BH) is weakly equivalent to Mapr,,(NG, N(H,V)), and

B: Hom(G, H) — Map,(BG, BH)
1s a weak equivalence if and only if
Ly MapsTop(NG, NH) — MapsTop(NG, N(H,V))
1s a weak equivalence.

Proof. Use (3.7) with X = NG, which is Reedy cofibrant by (2.9)). It is straightforward to see that
Map 1., (NG, NH) — Hom(G, H) (evaluation at spaces in degree 1) is a homeomorphism, and so
the map B coincides with .. O

3.9. Remark. If H is a discrete group, then NH is already Reedy fibrant, in which case we can
immediately derive the well-known fact that B: Hom(G, H) — Map, (BG, BH) is a weak equivalence
for any such topological group G.

4. PROOF OF (|l.1)): BASED MAPPING SPACE

As above, we assume that H is a 1-truncated compact Lie group. We will now also assume that
G is a compact Lie group. By , we have reduced to showing that Mapr,, (NG, NH) —
Map,,, (NG, N(H,V)) is a weak equivalence.

Let B := Map,p.,(NG, N(H,V)). Using and the identification of the latching inclusions
L,NG — G™ (2.9), we see that E is precisely the space of pairs

((,v) € Map(G, H) x Map(G x G, V)
such that
(1) ¢(e) =e and v(g,e) =0=wv(e,g) for g € G,
(2) C(g192) = exp[v(g1,92)I¢(91)¢(g2) for g1,92 € G,
(3) v(g192,93) + v (91, 92) = v(g1, 9293) + ad(C(g1))[v(g2, 93)] for g1, 92,93 € G.
Explicitly, this corresponds to the map NG — N(H,V) which (in the notation of sends
(gl’j) S (NG)n to (hij,vijk) S N(H, V)n with hij = C(gij) and Vijk = V(gij,gjk)'

Let E° := Mapt., (NG, NH). The map E° — FE is precisely inclusion into the subspace
consisting of points of the form (¢,0).

For a continuous map ¢: G — H, we write (: G — H/Hj for the composite with the quotient

map H — H/Hy. Note that if (¢,v) € E, then ( is a continuous homomorphism of groups. Since
H/H) is discrete, we obtain coproduct decompositions

E=][E, E°=]]E).  ~€Hom(G,H/Hy).
v v

Thus, we must show that for each such ~, the inclusion Eg C E, is a weak equivalence. In fact,
we can give an explicit (strong) deformation retraction of E, to Eg, which relies on the existence
of a contracting homotopy of the complex C*(G, Vaq~) of normalized continuous cochains on G
with values in the representation ady: G — Aut(V'), which may be constructed explicitly using an
invariant measure on the compact group G. We spell out the details we need below.

Fix v € Hom(G, H/Hp). Let C’% C Map(G, V) be the subspace of functions p: G — V such that

p(e) = 0.
Let Zg C Map(G x G, V) be the subspace of functions v: G x G — V such that
v(g,e) =0=v(e,9), g€G,

and
v(9192,93) + (91, 92) = v(91, 9293) + ad v(g1) [ (92, 93)], 91,92,93 € G.
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Both Z3 and C% are topological real vector spaces. Define continuous and linear maps
il 2 . 72 1

d: Cy — Z3, H:Z - C;

by
dp(gr, g2) == p(g1) — p(g1g2) + ad y(g1)p(g2),
() = [ o 'vlw.g)do.
G

where we use right-invariant Haar measure on GG normalized so that fG der = 1.

4.1. Lemma. The composite dH : Zg — Zs 1s the identity map.

Proof. For g € G and v € V we write “gv” for ady(g)(v) below. Given v € Z?f we have
dHv(g1,92) = / afly(:v,gl) — afly(aﬁ,glgg) + glafll/(w,gg) dx
G
= / ez, 1) — 27 (zgr, g2) + v(z, 1) — 2v(91, 92)] + e v (w, g2) da
G

=v(g1,92) — /Ggl(xgl)_lV(I‘gl,gz) dz + /Gglif_llf(ﬂ?,gz) dy = v(91, 92),
the last cancellation by right-invariance of the measure. O
4.2. Proposition. The inclusion ES C E, admits a strong deformation retraction.
Proof. Define Ky: E, — E, for 0 <t <1 by K(¢,v) := ((, 1), with
Ce(g) := explt Hu(g)]¢(9),
vi(91,92) = v(91,92) — tdHV(g1, g2).
We have Ko = idg., Kt|E9/ = idEg, and K1(Ey) C Eg as desired, the last using . O
The proof of follows, using and the remarks above.
4.3. Remark. If H is an abelian group, then ad: H — Aut(V) is trivial. In this case, the proof of
directly gives a deformation retraction of E* C E.
5. PROOF OF : UNBASED MAPPING SPACE

Given simplicial spaces X and Y, we have an internal function object Map(X,Y) € sTop,
characterized so that Map(X, —) is the right adjoint to (—) x X. We have that

Map(Xa Y)TL = Ma'psTop(X X N[n]v Y>7
where [n] is the n-arrow category. In particular, Map(X, Y )o &~ Mapyp,,(X,Y).
Formation of the internal function object is compatible with realization: there are canonical maps
(5.1) p: |[Map(X,Y)|| = Map(||X]|, [Y])

natural in X and Y. This map exists exactly because the realization functor ||—|| : sTop — Top
preserves finite products, and is characterized as the map adjoint to

IMap(x, V)| x [ X[ < [Map(X,Y) x X|| =5 v .

Given topological groups G and H, we consider the function object Map(NG, NH). We have an
evident isomorphism
Map(NG,NH) ~ NFun(G, H),
where Fun(G, H) is the internal category in Top of functors and natural transformations from G to
H. Explicitly, this has
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e objects ¢ € Hom(G, H), and
e morphisms ¢g -+ ¢1 where h € H, 1 = hdoh~'. |,
and thus homeomorphisms NFun(G, H),, = Map(NG, NH),, = Hom(G, H) x H*".

Write (H ~ H) for the translation category of the left action of H on itself, viewed as a category
object in Top. This has

e objects hg € H,
e morphisms ho - hy where h € H, hy = hhg.
We have homeomorphisms N(H ~ H), = H*"+1_ The group H acts on the category (H ~ H)
by - hg = hod~! (on objects) and J - (ho LN hi) = hod~* By hyst (on morphisms), where § € H.
We let EH := ||[N(H ~ H)||, a contractible H space with free H-action.

5.2. Lemma. There is a homeomorphism |Map(NG, NH)|| ~ (Hom(G,H) x EH)/H, where H
acts on Hom (G, H) by conjugation.

Proof of (1.2]). We have a commutative diagram

[Map(NG, NH)|| —— Map(| NG|, | NH]|)

aJ( J{ﬁ
[Map (s, N H)|| ——— Map(||+| , | N H]|)

where the vertical maps are induced by restriction along * — NG, and the lower horizontal map is
the evident homeomorphism (both source and target are homeomorphism BH). We claim that p is
a weak equivalence.

By we see that a: (Hom(G,H) x EH)/H — BH is a fiber bundle with fiber H. Since
B: Map(BG,BH) — BH is also a fibration, and the base space BH is path connected, p is a weak
equivalence if and only if its restriction to the fiber over the base point is, which is precisely the
weak equivalence Hom(G, H) — Map, (BG, BH) of (1.1]. O

6. PROOF OF (1.4): EQUIVARIANT CLASSIFYING SPACE

6.1. Recollections on equivariant bundles. A G-equivariant principal H bundle (or (G, H)-
bundle), is a principal H-bundle 7: P — X, together with actions of G on P and X, compatible
with 7, so that G acts via maps of principal H-bundles. We will always assume that both G and H
are compact Lie groups.

This definition is somewhat anomalous, in that (G, H)-bundles are not characterized by a property
which is local in X. Thus, we say that a (G, H)-bundle is locally trivial if it looks locally like

(GXx H)x\U — Gxg U,

where G’ < G is a closed subgroup, Ay := { (9, #(g)) | g € G’} is the graph of some homomorphism
¢: G' — H,and A = G’ acts on a space U. The key result is that if G and H are compact and X
is completely regulalﬂ then any (G, H)-bundle over X is locally trivial |[Las82 Cor. 1.5].

A (G, H)-bundle P — X is numerable it admits a locally trivializing cover which itself admits a
subordinate partition of unity by G-invariant functions. Over a paracompact base X, every locally
trivial bundle is numerable |[Las82, Cor. 1.13]. There is a universal (G, H)-bundle EqH — BgH,
which classifies equivalence classes of numerable bundles: see |Las82], [LM86], and also [LU14] for a
recent and more general treatment.

2Completely regular = points are closed, and any point and disjoint closed subset are separated by a real valued
function.
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We will be mainly concerned with the case of (G, H)-bundles 7: P — X such that G-acts trivially
on X. In such a case there is a natural function

7: P — Hom(G, H)

defined so that 7(p)(y) € H is the unique § € H such that (v,d) - p = p. When P — X is locally
trivial, the map 7 is seen to be continuous. Observe that 7 is G x H-equivariant, where this group
acts on Hom(G, H) by conjugation: (7,d) - ¢ = d¢(v) " Lopd(y)d L.

6.2. Lemma. For any locally trivial (G, H)-bundle 7: P — X over a G-fixed base X, the map
7: P — Hom(G, H) is a Serre fibration.

Proof. This will follow by showing that (7,7): P — Hom(G, H) x X is actually fiber bundle. Since
7 is locally trivial, we can reduce to the case when 7 has the form 7: (G x H)/Ay x U — U, where
Ay < G x H is the graph of some homomorphism ¢: G — H. Then

(r,m) =pxidy: (Gx H)/Ay x U - Hom(G,H) x U,
where p: (G x H)/Ay — Hom(G, H) sends [y, 8] — d¢(v) Lo (d¢(7) 1) L. Because Hom(G, H) is
topologically a coproduct of orbits under H-conjugation (1.3)), (7.1]), we see that p is isomorphic to

the composite of a projection map (G x H)/Ay — H/Cy(¢) (induced by (7,6) — d¢(y) ) with
an open and closed immersion, and thus is a fibration. ]

6.3. Outline of the proof. To prove that the map BoH — Map(EG, BgH) (induced by restriction
along FG — x) is a G-equivariant weak equivalence, it suffices to show that it induces a weak
equivalence of spaces (BgH)® — Map(EG, BH)%' for all closed subgroups G’ < G. Without loss
of generality, we may assume G’ = G, since, when the group action is restricted to the subgroup &,
BgH is a BoH and EG is an EG’. Thus, we will show that (BgH)® — Map(EG, B¢H)® is an
equivalence, using the following.

6.4. Lemma. Suppose given a (G, H)-bundle P — X over a space X with trivial G-action, together
with maps:
(1) a: X = (BgH)Y C BgH classifying the G-equivariant H-bundle P — X, i.e., covered by a
(G, H)-bundle map P — EgH, and
(2) p: X — Map(BG, BH), whose adjoint p: X x BG = (X x EG)/G — BH classifies the H -
bundle (P x EG)/G — (X x EG) /G, i.e., covered by an H-bundle map (P x EG)/G — EH.

Then the diagram
X = (BgH)“

(65) j |

Map(BG, BH) —— Map(EG, BoH)“

commutes up to homotopy. (The bottom map is induced by a G-equivariant map BH — BgH,
where G acts trivially on BH, and is a weak equivalence.)

Proof. The adjoints of both composite maps X — Map(EG, BaH )G are G-equivariant maps
(X x EG)/G — BgH, which in either case are covered by maps (P x EG)/G — EgH of (G, H)-
bundles. The result follows from the universal property of BoH, as the classifying space for such
bundles. O

The strategy is as follows. Fix compact Lie groups G and H, and take p: X — Map(BG, BH) in
(6.4)) to be isomorphic to the map (Hom(G,H) x EH)/H — Map(BG, BH) described in which
for 1-truncated H gives the weak equivalence of (|1.2)). We will

(1) construct a certain (G, H)-bundle P — X (where G acts trivially on X),
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(2) prove that a map a: X — BgH classifying P — X induces a weak equivalence X —»
(BgH)G C BgH, and
(3) construct a bundle map (P x EG)/G — EH covering the adjoint p: X x BG — BH to p.
Thus by both a and p fit in a homotopy commutative square . It follows that if H is
1-truncated, implies that p is a weak equivalence, from which it follows that the right-hand
vertical arrow is a weak equivalence, which is the desired result. Note: the hypothesis that H is
1-truncated is used only to show that p (which exists for arbitrary H) is a weak equivalence.

6.6. Step 1: Construction of P — X. As in the previous section, we consider categories
Fun(G, H) and (H ~ H) (internal to Top), where G and H are compact Lie groups. Consider the
topological category C' defined as the fiber product

C:=Fun(G,H) xy (H~H)

via the evident restriction functors Fun(G, H) — Fun({e}, H) = H and (H ~ H) — (H ~ %) = H.
(Here H represents a topological category with one object.)
The group G x H acts on C via

(7,6) - (¢, ho) = (o, do(y)hod ™),

on objects and

(7:0) - (60 = 61, ho = h1) = (d0 = b1, 0(1)hod " 2 G1(7)h1d ")
on morphisms, (v,d) € G x H. (This works exactly because hoo(y) = ¢1(7)h.) The evident
projection functor C' — Fun(G, H) is invariant under the G x H action on C, with respect to the
trivial action on Fun(G, H).

We set P := [|[NC|| and X := ||[NFun(G, H)||, with P — X induced by the evident projection
functor. It is straightforward to show that the induced G x H-action on P is compatible with the
projection map to X, and that H acts freely on P with P/H ~ X. In particular, P — X has the
structure of a G-equivariant principal H-bundle.

We note an equivalent description of C, and hence of P. Let C' := Hom(G, H) x N(H ~ H),
where Hom(G, H) is viewed as a topological category with only identity maps. There is an
isomorphism C’ — C' of topological categories, given on objects and morphisms by

(6,h0) = (hoohy ' o), (6,0 = ha) = (hodhg ' > haghy ! ho = hu).
The G x H-action on €’ induced by this isomorphism is described by
(7,8) - (¢, ho) = (36(7) " ¢d(1)d ™" hog(7)0 ™),

(7:6) - (&.ho % ) = (56(7) ' 66(1)3 " oo ()61 % h()d ).
In particular, the projection functor C’ — Hom(G, H) induces a G x H-equivariant map P —
Hom(G, H) (using the conjugation G' x H action on Hom(G, H)), and this map is a non-equivariant
weak equivalence, since P ~ |[NC'|| ~ Hom(G,H) x EH.

6.7. Step 2: The weak equivalence a: X — (BgH)®. Choose any X — BgH classifying
the P — X constructed above (this exists because X is paracompact and completely regular, so
numerable), and so covered by a G x H-equivariant map P — EgH. Since the action of G on X is
trivial, these factor through a: X — (BgH)® and o/: P — p~'((BgH)%), where p: EgH — BgH
is the universal bundle.

6.8. Lemma. The map o: P — p~'((BgH)%) is a weak equivalence of underlying spaces.
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Proof. The map o fits in a commutative diagram,

/

P\ a P (BoH)®)
Hom(G, H)
where by (6.2]) both maps marked 7 are Serre fibrations. The fibers of these 7s over ¢ € Hom(G, H)

are EH and (EgH)" respectively, both of which spaces are contractible. Thus o is a weak
equivalence (as are both 7s). O

It follows that a: X — (BgH )G is a weak equivalence, as it is obtained by the quotient of o’ by
free H-actions.

6.9. Step 3: The bundle map covering p: X — Map(BG, BH). We have a commutative square
of functors

Cx(GAG)=Fun(G,H)xg(H~H)x (G~G)—— (H ~ H)

J |

Fun(G,H) x (G ~ G) H

where the vertical arrows are the evident projections, the top horizontal arrow is given by

h h he¢o(g)=¢1(g9)h
(0, ho, g0) = (d0(g0)ho)s (B0 2 61,10 2 hiygo % g1) — (Bo(go)ho —= =D, o (g1 ).
on objects and morphisms, and the bottom horizontal arrow is given by

(%0, 90) = *, (%0 2 61,90 % g1) — (* ho(9)=d1(9)h, %).

The group G acts on the objects on the left-hand side of the square, where G acts on C as described
above, by the tautological right action on (G ~ G), and trivially on Fun(G, H). The horizontal
arrows are invariant under this G action.

Thus, taking geometric realizations of nerves and passing to quotients by G-actions, we obtain a
commutative square

(P x EG)/G—— EH

| ]

(X x EG)/G—— BH

which is evidently a map of H-bundles. Under the identification (X x EG)/G ~ X x BG =
N(Fun(G, H) x G), we see that the bottom arrow is isomorphic to that obtained from the evaluation
functor Fun(G, H) x G — H, and thus is adjoint to the map p: X — Map(BG, BH) described
earlier.

7. THE SPACE OF HOMOMORPHISMS BETWEEN COMPACT LIE GROUPS

Recall that Hom(G, H) denotes the space of homomorphisms equipped with the compact-open
topology. We give a proof of the following fact, which is standard but not easily read from the
literature with which I am familiar.

7.1. Proposition. Let G and H be Lie groups, with G compact. The map

(6,hC(8)) = hoh™": T] H/C(¢) — Hom(G, H),
[¢)
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where C(¢) ={h € H | ¢(g)h = ho(g) Vg € G }, and [¢] runs over a set of H-conjugacy classes in
Hom(G, H), is a homeomorphism. In particular, Hom(G, H) is locally compact, and thus a CGWH
space.

Proof. We quote a classical theorem of Montgomery-Zippin [MZ55, p. 216]: for every compact
subgroup K of a Lie group L, there exists a neighborhood U of K such that every closed subgroup of
L in U is L-conjugate to a subgroup of K. Appliedto L = Gx H,and K = Ay = {(9,¢(9) | g € G },
the graph of a continuous homomorphism ¢: G — H, we obtain a neighborhood U C G' x H of Ay
such that if Ay € U for ¢/ € Hom(G, H), then ¢’ is H-conjugate ¢ |[CF64, 38.1].

There exists a neighborhood V of e € H such that Ay, C {(g,h) | h(g)™' € V'} C U. To see
this, use the homeomorphism a: G x H — G x H, a(g,h) = (g, h¢(g9) 1), together with the tube
lemma applied to G x {e} C a(U).

By definition, the set V' := { f: G — H | f(G) C V } is an open subset of C(G, H), the space
of continuous maps G — H equipped with the compact-open topology. The space C(G, H) is a
topological group under pointwise multiplication in H; to prove this, use the fact that G, H, and
finite products thereof are locally compact, so that the relevant evaluation maps are continuous.
Therefore, the translated subset V'¢ is open in C(G, H). Tracing through the definitions, we see
that any continuous homomorphism G' — H in V’'¢ must be conjugate to ¢.

Thus, we have shown that conjugacy classes are open subsets of Hom(G, H).

Now consider the map of the proposition. Each H/C(¢) maps bijectively to a conjugacy class in
Hom(G, H). As H is Hausdorff, so is C(G, H) and hence so is the subspace Hom(G, H). Therefore,
each H/C(¢) — Hom(G, H) gives a homeomorphism to its image, since H/C(¢) is compact. Because
the image is also open, the homeomorphism of the proposition follows.

As an immediate consequence, we see that Hom(G, H) is a coproduct of compact Hausdorff
spaces, and thus locally compact. O
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