Power operations in Morava E-theory
 a survey

Charles Rezk
University of Illinois at Urbana-Champaign

May 2, 2009

1

http://www.math.uiuc.edu/~rezk/midwest-2009-power-ops.pdf

What are power operations?

$h^{*}=$ multiplicative cohomology theory: $h^{p}(X) \otimes h^{q}(X) \rightarrow h^{p+q}(X)$. m-th power map:

$$
x \mapsto x^{m}: h^{q}(X) \rightarrow h^{m q}(X)
$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^{m} :

$$
\begin{aligned}
& h^{0}\left(X \times B \Sigma_{m}\right) \xrightarrow{/ \alpha} h^{0}(X) \\
& P^{m} \downarrow^{\left[* \rightarrow B \Sigma_{m}\right]} \\
& h^{0}(X) \xrightarrow[x \mapsto x^{m}]{ } h^{0}(X)
\end{aligned}
$$

P_{m} is multiplicative, not additive.
Pairing with $\alpha \in h_{0}\left(B \Sigma_{m}\right)$ gives an operation $Q_{\alpha}: h^{0}(X) \rightarrow h^{0}(X)$.

Power operations from commutative R-algebras

$R=$ commutative S-algebra.
$M=$ an R-module. Note: $[R, M]_{R} \approx[S, M]_{S} \approx \pi_{0} M$.
Free commutative R-algebra on M :

$$
\mathbb{P}_{R} M=\bigvee_{m \geq 0} \mathbb{P}_{R}^{m} M \approx \bigvee_{m \geq 0} \underbrace{\left(M \wedge_{R} \cdots \wedge_{R} M\right)}_{m \text { times }} h \Sigma_{m}
$$

commutative R-algebra $A=$ algebra for the monad \mathbb{P}_{R}, determined by

$$
\mu: \mathbb{P}_{R} A \rightarrow A
$$

How to build a power operation

$A=$ commutative R-algebra.

- Choose $\alpha: S \rightarrow \mathbb{P}_{R}^{m}(R) \approx R \wedge B \Sigma_{m}^{+}$(map of spectra).
- Represent $x \in \pi_{0} A$ by $f_{x}: R \rightarrow A$.

$$
R \xrightarrow{\alpha} \mathbb{P}_{R}^{m}(R) \xrightarrow{\mathbb{P}_{R}^{m}\left(f_{x}\right)} \mathbb{P}_{R}^{m}(A) \subset \mathbb{P}_{R}(A) \xrightarrow{\mu} A
$$

$Q_{\alpha}(x) \in \pi_{0} A$ represented by composite.
Remarks:

- $Q_{\alpha}: \pi_{0} A \rightarrow \pi_{0} A$ may not be additive or multiplicative.
- Can get $Q_{\alpha}: \pi_{q} A \rightarrow \pi_{q+r} A$ from

$$
\alpha: \Sigma^{q+r} R \rightarrow \mathbb{P}_{R}^{m}\left(\Sigma^{q} R\right) \approx R \wedge B \Sigma_{m}^{q V_{m}} .
$$

Example 1: $H \mathbb{F}_{2}$

$H=H \mathbb{F}_{2}=\bmod 2$ Eilenberg Mac Lane spectrum.
$A=$ commutative H-algebra spectrum.
$\pi_{*} A$ is a graded commutative \mathbb{F}_{2}-algebra.

Operations on π_{*} of H-algebra

$Q^{r}: \pi_{q} A \rightarrow \pi_{q+r} A$ such that

- $Q^{r}(x+y)=Q^{r}(x)+Q^{r}(y)$.
- $Q^{r} Q^{s}(x)=\sum \epsilon_{r, s}^{i, j} Q^{i} Q^{j}(x)$ if $r>2 s$, where $i \leq 2 j$.
- $Q^{0}(1)=1, Q^{r}(1)=0$ if $r \neq 0$.
- $Q^{r}(x y)=\sum Q^{i}(x) Q^{r-i}(y)$.
- $Q^{r}(x)= \begin{cases}x^{2} & \text { if } r=q, \\ 0 & \text { if } r<q .\end{cases}$
$\pi_{*} \mathbb{P}_{H}\left(\Sigma^{q} H\right) \approx$ free gadget (with above structure) on one generator in dimension q. (See McClure in [BMMS 1986].)

Special cases:

- Cochains on a space. $A=\operatorname{Func}\left(\Sigma_{+}^{\infty} X, H \mathbb{F}_{2}\right) \rightsquigarrow$ power operations are Steenrod operations on $H^{*}\left(X, \mathbb{F}_{2}\right)$.
- Chains on an infinite loop space. $A=H \mathbb{F}_{2} \wedge \Sigma_{+}^{\infty} \Omega^{\infty} Y \rightsquigarrow$ power operations are Kudo-Araki-Dyer-Lashof operations on $H_{*}\left(\Omega^{\infty} Y, \mathbb{F}_{2}\right)$.

Example 2: p-complete K-algebras [McClure]

$K=$ complex K-theory spectrum.
p-complete K-algebra: commutative K-algebra A such that $A \approx A_{p}^{\wedge}$.
Operations on π_{0} of p-complete K-algebra
$\psi^{p}: \pi_{0} A \rightarrow \pi_{0} A$ such that

- $\psi^{p}(x+y)=\psi^{p}(x)+\psi^{p}(y)$.
- $\psi^{p}(1)=1$.
- $\psi^{p}(x y)=\psi^{p}(x) \psi^{p}(y)$.
- $\theta: \pi_{0} A \rightarrow \pi_{0} A$ such that $\psi^{p}(x)=x^{p}+p \theta(x)$.
ψ^{p} and θ correspond to elements of $\alpha \in K_{0}^{\wedge} B \Sigma_{p}$.

$$
K_{q}^{\wedge} X \stackrel{\text { def }}{=} \pi_{q}\left((K \wedge X)_{p}^{\wedge}\right)
$$

ψ^{p} is the p th Adams operation.

- $C_{0} / \mathbb{F}_{2}=$ supersingular elliptic curve.
- $\widehat{C}_{0}=$ formal completion - formal group of height 2.
- $E=$ Landweber exact spectrum associated to universal deformation of \widehat{C}.

$$
\pi_{*} E \approx \mathbb{Z}_{2} \llbracket a \rrbracket\left[u, u^{-1}\right], \quad|a|=0,|u|=2
$$

Note: $K(2) \approx E /(2, a)$ (Morava K-theory).

- E is a commutative S-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Example 3 (continued): Formulas

$A=K(2)$-local commutative E-algebra ($\pi_{0} A$ is an $E_{0}=\mathbb{Z}_{2} \llbracket a \rrbracket$-algebra).

Operations on π_{0} of $K(2)$-local E-algebra

$Q_{0}, Q_{1}, Q_{2}: \pi_{0} A \rightarrow \pi_{0} A$ such that

- $Q_{i}(x+y)=Q_{i}(x)+Q_{i}(y)$

$$
Q_{0}(a x)=a^{2} Q_{0}(x)-2 a Q_{1}(x)+6 Q_{2}(x)
$$

- $Q_{1}(a x)=3 Q_{0}(x)+a Q_{2}(x)$
$Q_{2}(a x)=-a Q_{0}(x)+3 Q_{1}(x)$
$Q_{1} Q_{0}(x)=2 Q_{2} Q_{1}(x)-2 Q_{0} Q_{2}(x)$
$Q_{2} Q_{0}(x)=Q_{0} Q_{1}(x)+a Q_{0} Q_{2}(x)-2 Q_{1} Q_{2}(x)$
- $Q_{0}(1)=1, Q_{1}(1)=Q_{2}(1)=0$
$Q_{0}(x y)=Q_{0} \times Q_{0} y+2 Q_{1} \times Q_{2} y+2 Q_{2} x Q_{1} y$
- $Q_{1}(x y)=Q_{0} x Q_{1} y+Q_{1} \times Q_{0} y+a Q_{1} \times Q_{2} y+a Q_{2} \times Q_{1} y+2 Q_{2} \times Q_{2} y$
$Q_{2}(x y)=Q_{0} x Q_{2} y+Q_{2} \times Q_{0} y+Q_{1} \times Q_{1} y+a Q_{2} x Q_{2} y$
- $\theta: \pi_{0} A \rightarrow \pi_{0} A$ such that $Q_{0}(x)=x^{2}+2 \theta(x)$

Example 3 (continued): The ring of power operations

The ring Γ of power operations

Associative ring containing $E_{0}=\mathbb{Z}_{2} \llbracket a \rrbracket$ and generators Q_{0}, Q_{1}, Q_{2}, and subject to relations

$$
\begin{array}{ll}
Q_{0} a=a^{2} Q_{0}-2 a Q_{1}+6 Q_{2} & \\
Q_{1} a=3 Q_{0}=2 Q_{2} Q_{1}-2 Q_{0} Q_{2} \\
Q_{2} a=-a Q_{0}+3 Q_{1} &
\end{array} Q_{2} Q_{0}=Q_{0} Q_{1}+a Q_{0} Q_{2}-2 Q_{1} Q_{2} .
$$

Γ has "admissible basis" as left $\mathbb{Z}_{2} \llbracket a \rrbracket$ module:

$$
Q_{0}^{i} Q_{j_{1}} \cdots Q_{j_{r}}, \quad i \geq 0, j_{k} \in\{1,2\}
$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma}=\mathbb{F}_{2} \otimes_{\mathbb{Z}_{2} \llbracket a \rrbracket} \Gamma$. Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.) He describes ring structure modulo indeterminacy.

Example 3 (continued): Coproduct on 「

"Cartan formula" is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

$\epsilon: \Gamma \rightarrow E_{0}$ and $\Delta: \Gamma \rightarrow E_{0} \Gamma \otimes E_{0} \Gamma$ by

$$
\epsilon\left(Q_{0}\right)=1, \quad \epsilon\left(Q_{1}\right)=0=\epsilon\left(Q_{2}\right)
$$

$$
\begin{aligned}
& \Delta\left(Q_{0}\right)=Q_{0} \otimes Q_{0}+2 Q_{1} \otimes Q_{2}+2 Q_{2} \otimes Q_{1} \\
& \Delta\left(Q_{1}\right)=Q_{0} \otimes Q_{1}+Q_{1} \otimes Q_{0}+a Q_{1} \otimes Q_{2}+a Q_{2} \otimes Q_{1}+2 Q_{2} \otimes Q_{2} \\
& \Delta\left(Q_{2}\right)=Q_{0} \otimes Q_{2}+Q_{2} \otimes Q_{0}+Q_{1} \otimes Q_{1}+a Q_{2} \otimes Q_{2}
\end{aligned}
$$

($E_{0} M \otimes E_{E_{0}} N$ means tensor using left-module structures.)
Coproduct and product "commute".

Conclusion

Γ is a twisted bialgebra over E_{0} (like a Hopf algebra, but E_{0} isn't central). Left Γ-modules have a symmetric monoidal tensor product: $M \otimes_{E_{0}} N$.

Example 3: Summary

Definition

A Г-ring is a commutative ring object in Γ-modules.

Definition

An amplified Γ-ring is a Γ-ring B equipped with $\theta: B \rightarrow B$ such that $Q_{0}(x)=x^{2}+2 \theta(x)$ (together with formulas for $\left.\theta(x+y), \theta(x y), \theta(a x)\right)$.

In summary:

Proposition

For A a $K(2)$-local commutative E-algebra, $\pi_{0} A$ naturally has the structure of an amplified Γ-ring. $\pi_{0} L_{K(2)} \mathbb{P}_{E}(E) \approx F_{(2, a)}^{\wedge}$, with $F=$ free amplified Γ-ring on one generator.

This can be extended to non-zero degrees:
$\pi_{*} A$ is a graded amplified 「-ring, etc.

The general pattern

This is the general pattern for any Morava E-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

π_{*} of a $K(n)$-local commutative E-algebra is a graded amplified Γ-ring:

- Γ is a certain twisted bialgebra over E_{0}.
- $Q_{0} \in \Gamma$ and θ such that $Q_{0}(x)=x^{p}+p \theta(x)$.
- $\pi_{*} L_{K(n)} \mathbb{P}_{E}\left(\Sigma^{q} E\right) \approx F_{\mathfrak{m}}^{\wedge}$,
$F=$ free graded amplified Γ-ring on one generator in dim. q.

Questions / topics

(1) How does the formal group of E produce 「? (Ando, Hopkins, Strickland)
(2) Where does the "congruence" come from? (R.)
(3) What is the algebraic structure of Γ ? (quadratic? Koszul?) (R.)
(4) Logarithms and Hecke operators. (R., Ganter)

Topic 1: Formal groups and operations

$E=$ even periodic ring spectrum \Longrightarrow formal group G_{E}.

Formal group G_{E} of E

Formal scheme $G_{E}=\operatorname{Spf}\left(E^{0} \mathbb{C} \mathbb{P}^{\infty}\right)$ over $\pi_{0} E$.
Group law $G_{E} \times G_{E} \rightarrow G_{E}$ defined by

$$
\mu^{*}: E^{0} \mathbb{C P} \mathbb{P}^{\infty} \rightarrow E^{0}\left(\mathbb{C P} \mathbb{P}^{\infty} \times \mathbb{C} \mathbb{P}^{\infty}\right) \approx E^{0} \mathbb{C P}^{\infty} \widehat{\otimes}_{E_{0}} E^{0} \mathbb{C} \mathbb{P}^{\infty}
$$

$\mu: \mathbb{C P}^{\infty} \times \mathbb{C P}^{\infty} \rightarrow \mathbb{C P}^{\infty}$ classifies \otimes of line bundles.
Additive and multiplicative transformation of functors:

$$
E^{0}(X) \xrightarrow{\psi} F^{0}(X) \quad \Longrightarrow \quad g^{*} G_{E} \stackrel{\psi^{*}}{\longleftarrow} G_{F}
$$

$\psi^{*}=$ homomorphism of formal groups over F_{0}, where $g=\psi: E^{0}(*) \rightarrow F^{0}(*)$.

Topic 1: Deformations \& Morava E-theory

Let $G_{0}=$ height n formal group over perfect field k, char $k=p, n<\infty$.
Let $R=$ complete local ring, $\pi: R \rightarrow R / \mathfrak{m}$.

Definition

A deformation of G_{0} to R is (G, i, ψ) :

- G a formal group over R,
- $i: k \rightarrow R / \mathfrak{m}$,
- $\psi: \pi^{*} G \xrightarrow{\sim} i^{*} G_{0}$ iso of formal groups over R / \mathfrak{m}.

Theorem (Lubin-Tate)

There is a universal example of a deformation of G_{0}, defined over $E_{0} \approx \mathbb{W}_{p} k \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$.

Theorem (Morava; Hopkins-Miller)

Given G_{0} / k, there is a corresponding even periodic commutative S-algebra $E=E_{G_{0} / k}$, whose formal group is the universal deformation of G_{0}.

Topic 1: Deformations of Frobenius

Frobenius. $\phi: k \rightarrow k$ defined by $\phi(x)=x^{p}$.
Relative Frobenius. Frob: $G_{0} \rightarrow \phi^{*} G_{0}$.

Definition

A deformation of Frobenius $(G, i, \psi) \rightarrow\left(G^{\prime}, i^{\prime}, \psi^{\prime}\right)$ (of deformations of G_{0} to R) is a homomorphism $f: G \rightarrow G^{\prime}$ of formal groups over R, such that

$$
\begin{array}{ll}
\pi^{*} G \xrightarrow[\pi^{*}(f)]{ } & \pi^{*} G^{\prime} \\
\psi \downarrow \sim & \sim \downarrow^{\prime} \\
i^{*} G_{0} \xrightarrow[i^{*}\left(\text { Frob }^{r}\right)]{ } & i^{*} G_{0}
\end{array}
$$

commute for some $r \geq 0$.
$(\pi: R \rightarrow R / \mathfrak{m}$.
Remark: Deformations of Frobenius with domain (G, i, ψ) correspond exactly to finite subgroup schemes of $G .(f \rightsquigarrow \operatorname{Ker}(f) \subset G$.

Topic 1: Formal groups and power operations

$E=E_{G_{0} / k}$. Power map:

$$
E^{0} X \xrightarrow{P^{m}} E^{0}(X) \otimes_{E_{0}} E^{0}\left(B \Sigma_{m}\right) \xrightarrow{\tau} E^{0} X \otimes_{E_{0}} E^{0} B \Sigma_{m} / I
$$

Künneth isomorphism, if $E^{0} B \Sigma_{m}$ is finite and flat over E_{0} (true for Morava E-theory). I is the "transfer ideal":

$$
I=\sum_{0<i<m} \text { Image }\left[E^{0} B\left(\Sigma_{i} \times \Sigma_{m-i}\right) \xrightarrow{\text { transfer }} E^{0} B \Sigma_{m}\right] .
$$

Proposition

$\tau P^{m}: E^{0} X \rightarrow E^{0} X \otimes_{E^{0}} E^{0} B \Sigma_{m} / I$ is a ring homomorphism.
Remark: $E^{0} B \Sigma_{m} / I=0$ unless $m=p^{r}$.

Topic 1: The associated homomorphism

Let $\left(F_{m}\right)^{0}(X)=E^{0} X \otimes_{E^{0}} E^{0} B \Sigma_{m} / I$.
Ring homomorphisms:

- $s^{*}: E_{0} \rightarrow\left(F_{m}\right)_{0}$, induced by $B \Sigma_{m} \rightarrow *$.
- $t^{*}: E_{0} \rightarrow\left(F_{m}\right)_{0}$, defined by $\tau P^{m}: E^{0}(*) \rightarrow E^{0}(*) \otimes_{E_{0}} E^{0}\left(B \Sigma_{m}\right) / I$.

The ring operation

$$
E^{0}(X) \xrightarrow{\tau P^{m}}\left(F_{m}\right)^{0}(X) \quad \Longrightarrow \quad t^{*} G_{E} \stackrel{\left(\tau P^{m}\right)^{*}}{\leftrightarrows} s^{*} G_{E}
$$

produces a homomorphism of formal groups defined over $\left(F_{m}\right)_{0}$.
What is this homomorphism?

Topic 1: Deformations of Frobenius, revisited

Let $m=p^{r}, r>0$. Let $j: * \rightarrow B \Sigma_{m}$.

$$
E^{0} X \xrightarrow{P^{p^{r}}} E^{0} X \otimes_{E_{0}} E^{0}\left(B \Sigma_{p^{r}}\right) \xrightarrow{\tau} E^{0} X \otimes_{E_{0}} E^{0} B \Sigma_{p^{r} / l}
$$

Using the "double coset formula", have

$$
E^{0} B \Sigma_{p^{r}} /\left(I+\operatorname{Ker}\left(j^{*}\right)\right) \approx E_{0} / p .
$$

Thus

$$
\pi \tau P^{p^{r}}(x)=x^{p^{r}} \quad\left(\text { in } E^{0} X /(p)\right)
$$

Conclusion

$\left(\tau P^{p^{r}}\right)^{*}: s^{*} G_{E} \rightarrow t^{*} G_{E}$ is a deformation of Frobenius.

Theorem (Strickland (1998))

The homomorphism $\left(\tau P_{p^{r}}\right)^{*}: s^{*} G_{E} \rightarrow t^{*} G_{E}$ over $\left(F_{p^{r}}\right)_{0}$ is the universal example of a deformation of Frob^{r} between deformations of G_{0}.

Remember: deformations of Frobenius correspond to finite subgroups of the domain.
Strickland actually proved the following statement:

Theorem (Strickland (1998))

The data $\left(s^{*} G_{E}, \operatorname{Ker}\left(\tau P_{p^{r}}\right)^{*}\right)$ over $\left(F_{p^{r}}\right)_{0}$ is the universal example of a pair (G, H) consisting of a deformation G of G_{0} and a finite subgroup scheme $H \subset G$ of rank $m=p^{r}$.
$\mathcal{D}(R)=\left\{\begin{array}{l}\text { Objects: deformations }(G, i, \phi) \text { of } G_{0} / k \text { to } R,\end{array}\right.$ Morphisms: deformations of Frobenius.
$f: R \rightarrow R^{\prime}$

$$
\Longrightarrow \quad f^{*}: \mathcal{D}(R) \rightarrow \mathcal{D}\left(R^{\prime}\right) .
$$

Definition

A sheaf of modules M on $\mathcal{D}=\{\mathcal{D}(R)\}$ consists of

- functors $M_{R}: \mathcal{D}(R)^{\text {op }} \rightarrow \operatorname{Mod}_{R}$,
- natural isomorphisms $M_{f}: R^{\prime} \otimes_{R} M_{R} \xrightarrow{\sim} M_{R^{\prime}} \circ f^{*}$, satisfying obvious "coherence" axioms.
\Longrightarrow symmetric monoidal category $\operatorname{Mod}_{\mathcal{D}}$ of sheaves of modules.
Let $\Gamma=$ ring of additive power operations for E.
That is, $\Gamma \subset \bigoplus_{m \geq 0} E_{0}^{\wedge} B \Sigma_{m}$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\operatorname{Mod}_{\mathcal{D}} \approx \operatorname{Mod}_{\Gamma}$ of symmetric monoidal categories.

- $C_{0} / \mathbb{F}_{2}=$ elliptic curve in \mathbb{P}^{2} defined by $Y^{2} Z+Y Z^{2}=X^{3}$. $\Longrightarrow E=E_{\widehat{C}_{0} / \mathbb{F}_{2}}$.

Proposition

$$
\left(F_{2}\right)_{0}=E^{0} B \Sigma_{2} / I \approx\left(\mathbb{Z}_{2} \llbracket a \rrbracket\right)[d] /\left(d^{3}-a d-2\right)
$$

- Write

$$
E^{0} X \xrightarrow{\tau P^{2}}\left(E^{0} X\right)[d] /\left(d^{3}-a d-2\right)
$$

as

$$
x \mapsto \tau P^{2}(x)=Q_{0}(x)+Q_{1}(x) d+Q_{2}(x) d^{2}
$$

- τP^{2} is a ring homomorphism \Longrightarrow Cartan formulas.
- Universal deformation of C_{0} / \mathbb{F}_{2} :
$C / E_{0}=$ elliptic curve defined over $E_{0}=\mathbb{Z}_{2} \llbracket a \rrbracket$, by

$$
Y^{2} Z+a X Y Z+Y Z^{2}=X^{3}
$$

- Affine chart: $u=X / Y, v=Z / Y$.

$$
v+a u v+v^{2}=u^{3}
$$

(Basepoint is at $(u, v)=(0,0)$.)

- Subgroup schemes of rank 2: "generated" by points P of C of form $(u(P), v(P))=\left(d,-d^{3}\right)$ such that $d^{3}-a d-2=0$.
- These are also finite subgroups of the formal completion \widehat{C}, so

$$
\left(F_{2}\right)_{0}=E^{0} B \Sigma_{2} / I \approx\left(\mathbb{Z}_{2} \llbracket a \rrbracket\right)[d] /\left(d^{3}-a d-2\right)
$$

Example 3, revisited: The homomorphism

- Given $P \in C$ with $(u(P), v(P))=\left(d,-d^{3}\right), d^{3}-a d-2=0$
\Longrightarrow isogeny $\psi_{P}: C \rightarrow C^{\prime}$ such that $\operatorname{Ker}\left(\psi_{P}\right)=\langle P\rangle$.

$$
\left\{v+a u v+v^{2}=u^{3}\right\} \rightarrow\left\{v^{\prime}+\left(a^{2}+3 d-a d^{2}\right) u^{\prime} v^{\prime}+v^{\prime 2}=u^{\prime 3}\right\}
$$

- Definition of ψ_{P} : if $Q^{\prime}=\psi_{P}(Q)$, then

$$
u^{\prime}\left(Q^{\prime}\right)=-u(Q) u(Q+P), \quad v^{\prime}\left(Q^{\prime}\right)=v(Q) v(Q+P)
$$

- By construction, ψ_{P} is a deformation of Frobenius: if $d=0$, then $u^{\prime}\left(Q^{\prime}\right)=u(Q)^{2}$ and $v^{\prime}\left(Q^{\prime}\right)=v(Q)^{2}$.
- \Longrightarrow computation of $t^{*}: E_{0} \rightarrow\left(F_{2}\right)_{0}$:

$$
t^{*}(a)=\tau P^{2}(a)=a^{2}+3 d-a d^{2}
$$

- $\tau P^{2}(a x)=\tau P^{2}(a) \cdot \tau P^{2}(x) \Longrightarrow$

$$
\begin{aligned}
& Q_{0}(a x)+Q_{1}(a x) d+Q_{2}(a x) d^{2} \\
&=\left(a^{2}+3 d-a d^{2}\right)\left(Q_{0}(x)+Q_{1}(x) d+Q_{2}(x) d^{2}\right)
\end{aligned}
$$

Topic 2: The Frobenius congruence (Example 3)

In Example 3, we have

Proposition

$$
Q_{0}(x) \equiv x^{2} \quad \bmod 2
$$

In the example:

$$
E^{0} X \xrightarrow{P^{2}} E^{0} X \otimes_{E_{0}} E^{0}\left(B \Sigma_{2}\right) \xrightarrow{\tau}\left(E^{0} X\right)[d] /\left(d^{3}-a d-2\right)
$$

Formula:

$$
\left(\tau P^{2}\right)(x)=Q_{0}(x)+Q_{1}(x) d+Q_{2}(x) d^{2}
$$

pass to $E_{0} / 2$:

$$
x^{2} \equiv Q_{0}(x) \quad \bmod 2
$$

Topic 2: Frobenius is a deformation of Frobenius

$(G, i, \psi)=$ deformation of G_{0} / k to R.
When $R \supset \mathbb{F}_{p}$, there is a relative Frobenius homomorphism

$$
\text { Frob: } G \rightarrow \phi^{*} G
$$

$(G, i, \psi) \rightarrow\left(\phi^{*} G, i \phi, \phi^{*}(\psi)\right)$ in $\mathcal{D}(R)$.

Observation

Universal example of Frob: $G \rightarrow \phi^{*} G$ is determined by

$$
\pi: E^{0} B \Sigma_{p} / I \rightarrow E_{0} / p
$$

Topic 2: Frobenius congruence for sheaves

Definition

A sheaf of commutative rings B on \mathcal{D} is a Frobenius sheaf if for every $R \supset \mathbb{F}_{p}$ and $G \in \mathcal{D}(R)$,

$$
B_{R}(G) \xrightarrow{B_{R}(\text { Frob })} B_{R}\left(\phi^{*} G\right) \approx R^{\phi} \otimes_{R} B_{R}(G)
$$

is the relative Frobenius homomorphism of R-algebras.

Theorem (R.)

There is a functor

$$
\{\text { amplified } \Gamma \text {-rings }\} \rightarrow\{\text { Frobenius sheaves on } \mathcal{D}\}
$$

which restricts to an equivalence between the full subcategories of p-torsion free objects.

Topic 3: Koszul algebras

$A=\bigoplus_{r \geq 0} A_{r}$ graded associative ring, $A_{0}=R$ commutative.

Definition

A is Koszul if there exist R-modules C_{r} with $C_{0}=R$, and an exact sequence (a "Koszul complex")

$$
\cdots \xrightarrow{d} A \otimes_{R} C_{3} \xrightarrow{d} A \otimes_{R} C_{2} \xrightarrow{d} A \otimes_{R} C_{1} \xrightarrow{d} A \otimes_{R} C_{0} \xrightarrow{d} R \rightarrow 0
$$

of left A-modules such that d raises degree by 1 .

Fact

If A is Koszul, then

$$
A \approx T_{R}\left(A_{1}\right) /(U), \quad U \subset A_{2}
$$

(i.e., A is "quadratic".)

- Back to the example: $\Gamma \approx \bigoplus \Gamma_{r} \approx T_{E_{0}}\left(\Gamma_{1}\right) /(U)$, where $\Gamma_{1}=E_{0}\left\{Q_{0}, Q_{1}, Q_{2}\right\}, U=$ Adem relations.
- PBW Theorem (Priddy (1970)): if Γ has a "nice" admissible basis, then Γ is Koszul.
- \Longrightarrow Exact sequence.

$$
0 \rightarrow \Gamma \otimes_{E_{0}} C_{2} \rightarrow \Gamma \otimes_{E_{0}} C_{1} \rightarrow \Gamma \rightarrow E_{0} \rightarrow 0
$$

C_{i} are free modules over $E_{0}: \operatorname{rank} C_{1}=3, \operatorname{rank} C_{2}=2$.

Theorem (Ando-Hopkins-Strickland(?), R.)

For all $E=E_{G_{0} / k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$
0 \rightarrow \Gamma \otimes_{E_{0}} C_{n} \rightarrow \cdots \rightarrow \Gamma \otimes_{E_{0}} C_{1} \rightarrow \Gamma \rightarrow E_{0} \rightarrow 0
$$

where $n=$ height of G_{0}.

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_{E}.
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Topic 3: Linearization

Here are some of the ideas in the proof.

Definition

Given a (nonadditive) functor $F: \operatorname{Mod}_{E_{0}} \rightarrow \operatorname{Mod}_{E_{0}}$, the linearization $\mathcal{L}[F]: \operatorname{Mod}_{E_{0}} \rightarrow \operatorname{Mod}_{E_{0}}$ is

$$
\mathcal{L}[F](M)=\operatorname{Cok}\left[F(M \oplus M) \underset{F\left(\pi_{1}\right)+F\left(\pi_{2}\right)}{\stackrel{F\left(\pi_{1}+\pi_{2}\right)}{\longrightarrow}} F(M)\right] .
$$

$\mathcal{L}[F]$ is initial additive quotient functor of F.
In some cases, including ours, $\mathcal{L}[F \circ G] \rightarrow \mathcal{L}[F] \circ \mathcal{L}[G]$ is an isomorphism.

- $F: \operatorname{Mod}_{E_{0}} \rightarrow \operatorname{Mod}_{E_{0}}$ the free amplified Γ-ring functor.
- For E-module M with $\pi_{*} M=$ free E_{*}-module concentrated in even degree,

$$
\begin{gathered}
F\left(\pi_{0} M\right) \approx \bigoplus_{m \geq 0} \pi_{0} L_{K(n)} \mathbb{P}_{E}^{m}(M) . \\
\mathcal{L}[F]\left(E_{0}\right)=\Delta . \\
\mathcal{L}[F \circ \cdots \cdots \circ F]\left(E_{0}\right)=\Delta \otimes_{E_{0}} \cdots \otimes_{E_{0}} \Delta .
\end{gathered}
$$

Δ is a ring, non-canonically isomorphic to Γ.

- Monadic bar construction $\mathcal{B} \bullet(F, F, F)$.

$$
\mathcal{L}\left[\mathcal{B}_{\bullet}(F, F, F)\right] \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta)
$$

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M, \Delta, N)$ according to grading on Δ.
- Δ is Koszul if $\operatorname{gr}_{q} \mathcal{B}_{\bullet}\left(E_{0}, \Delta, E_{0}\right)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on $\mathcal{B}_{\bullet}(M, \Delta, N) ; E_{1}^{p, q}=$ chain complex.

$$
\mathcal{B}_{q}(F, F, F)\left(E_{0}\right) \approx(F \circ \cdots \circ F)\left(E_{0}\right) \approx \bigoplus_{m \geq 0} E_{0}^{\wedge}\left(K_{q}(m)_{h \Sigma_{m}}\right)
$$

$K_{\bullet}(m)$ is the partition complex:

$$
K_{\bullet}(m)=\text { nerve }\{\text { poset of partitions of }\{1, \ldots, m\}\}
$$

$$
\mathcal{B}_{q}(\Delta, \Delta, \Delta) \approx \mathcal{L}\left[\mathcal{B}_{q}(F, F, F)\right]\left(E_{0}\right) \approx \bigoplus_{m \geq 0} Q_{m}\left(K_{q}(m)\right)
$$

where

$$
Q_{m}(X)=\operatorname{Cok}\left[\bigoplus_{0<i<m} E_{0}^{\wedge}\left(X_{h\left(\Sigma_{i} \times \Sigma_{m-i}\right)}\right) \rightarrow E_{0}^{\wedge}\left(X_{h \Sigma_{m}}\right)\right]
$$

X is a set with Σ_{m} action.

- $\bar{K}_{\bullet}(m)=K_{\bullet}(m) / \sim$, associated to $\mathcal{B}_{\bullet}\left(E_{0}, \Delta, E_{0}\right) \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta) / \sim$.
- $Q_{m}\left(K_{\bullet}(m)\right)=0$ if $m \neq p^{r}$.
- Need to show $Q_{p^{r}}\left(\bar{K}_{\bullet}\left(p^{r}\right)\right)$ has H_{*} concentrated in degree r.
-

$$
K_{\bullet}\left(p^{r}\right) \times \Sigma_{p^{r}} /\left(\Sigma_{p} \imath \cdots 2 \Sigma_{p}\right) \longrightarrow K_{\bullet}\left(p^{r}\right),
$$

where

$$
U_{\bullet}\left(p^{r}\right)=\bigcup_{A \subset \Sigma_{p^{r}}}\left(K_{\bullet}\left(p^{r}\right) \times \Sigma_{p^{r}} /\left(\Sigma_{p} \imath \cdots \imath \Sigma_{p}\right)\right)^{A} .
$$

max. ab. subgp.

- Reduce to showing $Q_{p^{r}}\left(\bar{U}_{\bullet}\left(p^{r}\right)\right)$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a $\Sigma_{p^{r}}$-equivariant homotopy equivalence $\bar{U}_{\bullet}\left(p^{r}\right) \approx X_{+} \wedge S^{r}$, where X is a $\Sigma_{p^{r} \text {-set. }}$
- $A \subset \Sigma_{p^{r}}$ maximal abelian subgroup:

$$
K_{\bullet}\left(p^{r}\right)^{A}=\text { nerve }\{\text { poset of subgroups of } A\} .
$$

For $A \approx(\mathbb{Z} / p)^{r}$, the quotient $\bar{K}_{\bullet}\left(p^{r}\right)^{A}$ is (a 2-fold suspension of) the Tits building for $G L\left(r, \mathbb{F}_{p}\right)$.

$$
\bar{K}_{\bullet}\left(p^{r}\right)^{A} \approx \begin{cases}\bigvee S^{r} & \text { if } A \approx(\mathbb{Z} / p)^{r} \\ * & \text { otherwise }\end{cases}
$$

$A=(\mathbb{Z} / p)^{r}$ result is theorem of Solomon-Tits (1969).

- Show $\bar{U}_{\bullet}\left(p^{r}\right) \approx X_{+} \wedge S^{r}$ by the same "shellability" argument that Solomon-Tits use for $\bar{K}_{\bullet}\left(p^{r}\right)^{(\mathbb{Z} / p)^{r}}$.

We return to the main example (height 2, prime 2).

- $\Psi \in \Gamma$ is element corresponding to the operation:

$$
E^{0} X \xrightarrow{\tau P^{4}} E^{0} X \otimes_{E_{0}}\left(F_{4}\right)_{0} \xrightarrow{\mathrm{id} \otimes \rho} E^{0} X \otimes_{E_{0}} E_{0}
$$

where $\rho:\left(F_{4}\right)_{0} \rightarrow E_{0}$ classifies $[-2]: G_{E} \rightarrow G_{E}$
(since $[-2](x) \equiv x^{4} \bmod (2, a)$, it is a deformation of Frob ${ }^{2}$.)

- $\Psi=Q_{0} Q_{0}+a Q_{0} Q_{1}-2 Q_{1} Q_{1}+a^{2} Q_{0} Q_{2}-2 a Q_{1} Q_{2}+4 Q_{2} Q_{2}$.
- $\Psi: B \rightarrow B$ is a ring homomorphism.
- $N: B \rightarrow B$ corresponds to the operation:

$$
E^{0} X \xrightarrow{\tau P^{2}} E^{0} X \otimes_{E_{0}}\left(F_{2}\right)_{0} \xrightarrow{\text { Norm }} E^{0} X
$$

(N is a "multiplicative Hecke operator".)

$$
\begin{aligned}
N(x)= & \left(Q_{0} x\right)^{3}+2 a\left(Q_{0} x\right)^{2} Q_{2} x-a Q_{0} x\left(Q_{1} x\right)^{2}+a^{2} Q_{0} x\left(Q_{2} x\right)^{2} \\
& -6 Q_{0} Q_{1} x Q_{2} x+2\left(Q_{1} x\right)^{3}-2 a Q_{1} x\left(Q_{2} x\right)^{2}+4\left(Q_{2} x\right)^{3} .
\end{aligned}
$$

- $N(x y)=N(x) N(y)$, but N is not additive.
- $N(x) \equiv x^{2} \Psi(x) \bmod 2$.
- If $x \in B^{\times}$, then $N(x) \in B^{\times}$, so $N(x) \equiv x^{2} \Psi(x) \bmod 2$ implies

$$
\frac{x^{2} \Psi(x)}{N(x)} \equiv 1 \quad \bmod 2
$$

- For any 2-complete amplified 「-ring, get a homomorphism

$$
\begin{aligned}
& \ell: B^{\times} \rightarrow B \\
& \quad x \mapsto \frac{1}{2} \log \left[\frac{x^{2} \Psi(x)}{N(x)}\right] .
\end{aligned}
$$

- $A=$ a $K(2)$-local commutative E-algebra, there is a map of spectra

$$
\operatorname{gl}_{1}(A) \rightarrow A
$$

On π_{0}, this map is given by ℓ.

- This works in a similar way at all heights and primes.

Topic 4：Hecke operators

Now E is a general Morava E－theory（height n ，prime p ）．
－Elements $\tilde{T}\left(p^{k}\right) \in \Gamma$ ，given by

$$
E^{0} X \xrightarrow{\tau P^{p^{r}}} E^{0} X \otimes_{E_{0}}\left(F_{p^{r}}\right)_{0} \xrightarrow{\text { Trace }} E^{0} X
$$

（First constructed by Ando（1992）．）
－$\left\{\tilde{T}\left(p^{k}\right)\right\}$ generate a commuative subring $\mathbb{Z}_{p}\left[\tilde{T}_{1}, \ldots, \tilde{T}_{n}\right] \subset \Gamma$ ，where

$$
\sum_{r=0}^{n}(-1)^{r} p^{r(r-1) / 2} \tilde{T}_{r} \cdot U^{r}=\left(\sum_{k \geq 0} \tilde{T}\left(p^{k}\right) \cdot U^{k}\right)^{-1}
$$

in 「【U】．

Different construction of $\tilde{T}\left(p^{k}\right)$, due to Ganter.
$G=$ finite group.

- The $K(n)$-local Tate homology of $B G$ vanishes (Hovey-Strickland (1999)):

$$
L_{K(n)} B G_{+} \xrightarrow{\sim} \mathcal{F}\left(B G_{+}, L_{K(n)} S\right) .
$$

- $\Longrightarrow L_{K(n)} B G_{+}$is a commutative Frobenius algebra in the $K(n)$-local homotopy category (Strickland (2000)). (analogy between $\mathcal{F}\left(B G_{+}, L_{K(n)} S\right)$ and representation ring $R G$.)
- Let $I_{G}: L_{K(n)} S \rightarrow L_{K(n)} B G_{+}$, dual to $L_{K(n)} B G_{+} \rightarrow L_{K(n)} S$, (analogous to $\frac{1}{|G|} \operatorname{Trace} \sum_{g \in G} g: R G \rightarrow \mathbb{Z}$.)

Topic 4: Ganter's symmetric powers

- Define σ^{m} by

$$
E^{0} X \xrightarrow{P^{m}} E^{0} X \otimes_{E_{0}} E^{0} B \Sigma_{m} \xrightarrow{\mathrm{id} \otimes \Sigma_{\Sigma_{m}}^{*}} E^{0} X \otimes_{E_{0}} E_{0} .
$$

- $\sigma^{m}: B \rightarrow B$ are non-additive functions, analogous to symmetric powers of representations.

Theorem (Ganter (2004))

$$
\exp \left(\sum_{k \geq 0} \frac{\tilde{T}\left(p^{k}\right)(x)}{p^{k}} \cdot U^{p^{k}}\right)=\sum_{m \geq 0} \sigma^{m}(x) \cdot U^{m}
$$

$$
\sum_{k \geq 0} \tilde{T}\left(p^{k}\right)(x) \cdot U^{p^{k}}=\frac{d}{d U} \log \left(\sum_{m \geq 0} \sigma^{m}(x) \cdot U^{m}\right)
$$

Let $R=$ a $K(n)$-local S-algebra.

- Ganter's operations σ^{m} are defined on $\pi_{0} R$ for any $K(n)$-local S algebra. (They are defined using a homotopy class in $\pi_{0} L_{K(n)} B \Sigma_{m}^{+}$.)
- \Longrightarrow Ganter's formula gives a definition of Hecke operators on $\pi_{0} R$ for any $K(n)$-local S-algebra.
- By "suspension", get Hecke operators acting on $\pi_{q} R$ for $q \geq 0$ as well.

http://www.math.uiuc.edu/~rezk/midwest-2009-power-ops.pdf

- Ando, "Isogenies of formal group laws and powen operations in the cohomology theories E_{n} ", Duke 1995.
- Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004; arXiv:math/0204053.
- Bruner, May, McClure, Steinberger, H_{∞} ring spectra and their applications, LNM 1176, 1986.
- Ganter, "Orbifold genera, product formulas, and power operations", Adv. Math, 2006; arXiv:math/0407021.
- Hovey, Strickland, Morava K-theories and localization, Mem. AMS 139, 1999.
- Kashiwabara, "K(2)-homology of some infinite loop spaces", Math. Z., 1995.
- Priddy, "Koszul resolutions", Trans. AMS, 1970.
- Rezk, "The units of a ring spectrum and a logarithmic cohomology operation", J. AMS, 2006; arXiv:math/0407022.
- Rezk, "Power operations for Morava E-theory of height 2 at the prime 2", arXiv:0812.1320.
- Rezk, "The congruence criterion for power operations in Morava E-theory", arXiv:0902.2499.
- Strickland, "Finite subgroups of formal groups", J. Pure Appl. Alg., 1997.
- Strickland, "Morava E-theory of symmetric groups", Topology, 1998; arXiv:math/9801125.
- Strickland, " $K(n)$-local duality for finite groups and groupoids", Topology, 2000; arXiv:math/0011109.

