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What are power operations?

h* = multiplicative cohomology theory: hP(X) @ h9(X) — hPT9(X).
m-th power map:
x = xT: h9(X) — h™MI(X).

If h comes from a structured commutative ring spectrum, refine m-th
power map to P™:

HO(X x BEm) L5 K(X)

m T
P l[*_uszm]

ho(X) — == h°(X)

Pp, is multiplicative, not additive.
Pairing with a € hg(BX,) gives an operation @, : h°(X) — h°(X).
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Power operations from commutative R-algebras

R = commutative S-algebra.
M = an R-module. Note: [R, M]g =[S, M]s ~ moM.
Free commutative R-algebra on M:

PrM = \/P%/\/’% \/ (M/\R"‘/\RMZth

m>0 m>0

m times

commutative R-algebra A = algebra for the monad Pg, determined by

w: PrA — A.

Charles Rezk (UIUC) Power operations May 2, 2009 3/ 44



How to build a power operation

A = commutative R-algebra.
e Choose a: S — PR(R) ~ R A BE}, (map of spectra).
@ Represent x € mpA by f: R — A.
°
R % PE(R) k0N PR(A) C Pgr(A) & A
Qa(x) € moA represented by composite.
Remarks:
o Q,: mgA — meA may not be additive or multiplicative.

e Can get Qu: mgA — mg4 A from

a: YITR — PR(XIR) ~ R A BXIVm,
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Example 1: HF,

H = HF, = mod 2 Eilenberg Mac Lane spectrum.
A = commutative H-algebra spectrum.
m«A is a graded commutative Fp-algebra.

Operations on 7, of H-algebra

Q": mgA — mqyrA such that
° Q(x+y)=Q"(x)+Q(y).
0 QTQ%(x) =Y &% Q Q(x) if r > 25, where i < 2j.
0 Q1) =1, Q(1)=0if r#0.
° Q") =X Q(x)Q(y).
e Q'(x)= { ’

x< ifr=aq,

0 ifr<ag.

T« PH(X9H) ~ free gadget (with above structure) on one generator in
dimension g. (See McClure in [BMMS 1986].)
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Example 1 (continued)

Special cases:
e Cochains on a space. A = Func(X5°X, HF3) ~
power operations are Steenrod operations on H*(X,Fy).

@ Chains on an infinite loop space. A= HIF; AYXQ®Y ~

power operations are Kudo-Araki-Dyer-Lashof operations on
H.(Q*Y,F)).
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Example 2: p-complete K-algebras [McClure]

K = complex K-theory spectrum.
p-complete K-algebra: commutative K-algebra A such that A = AQ.

Operations on my of p-complete K-algebra
YP: mgA — mpA such that
© YP(x +y) = pP(x) + ¥P(y).
e YP(1)=1.
o YP(xy) = P(x)¥P(y).
e 0: mpA — oA such that YP(x) = xP + p0O(x).

¥P and 6 correspond to elements of o € K{'BE .

KOX & g (KA X)) -
1P is the pth Adams operation.
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Example 3: Morava E-theory (n =2, p = 2)

Co/F2 = supersingular elliptic curve.

@ (o = formal completion — formal group of height 2.
@ E = Landweber exact spectrum associated to universal deformation
of C.

T E ~ Zpla][u, u™!], la| =0, |u| = 2.

Note: K(2) ~ E/(2,a) (Morava K-theory).
e E is a commutative S-algebra (Hopkins-Miller Theorem).

@ Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for
K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).
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Example 3 (continued): Formulas

A = K(2)-local commutative E-algebra (mpA is an Ey = Z;[a]-algebra).

Operations on g of K(2)-local E-algebra
Qo, Ql, Q> : mgA — moA such that
o Qilx+y)=Qi(x)+ Qi(y)
Qo(aX) = a Qo(X) — 2a Ql(X) +6 QQ(X)
° Ql(ax) =3 Qo(x) + a Q(x)
@2(ax) = —a Qo(x) + 3 Qu(x)
Q1 Qo(x) =2 QQ1(x) — 2 QQ2(x)
Q2 Qo(x) = QQ1(x) + a QuQ2(x) — 2 Q1 Q2(x)
o Q(l)=1 @u(1)=Q(1)=0
Qo(xy) = QoxQoy + 2Q1xQ2y + 2Q2xQry
o Qi(xy) = QuxQry + Q1xQoy + aQ1xQay + aQ2xQ1y + 2Q2xQay
Q2(xy) = QoxQoy + QoxQoy + QixQry + aQoxQay
e 0: mA — moA such that Qo(x) = x* +26(x)
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Example 3 (continued): The ring of power operations
The ring ' of power operations

Associative ring containing Eg = Z[a] and generators Qu, Q1, Q2, and
subject to relations

Qa=a>Q —2aQ1 +6Q;
Qra=3Q +a@
Pa=-aQ+3Q

Q1Q=2@Q1 —2Qo Q>
@R = Q@1 +3aQR — 21 Q>

[ has “admissible basis” as left Zy[a] module:
QQu Qi 1204 {1,2}

Kashiwabara (1995): gives admissible basis for I' = I, Q7,41 T-
Problem: T is not a ring! (Kashiwabara knows this.)
He describes ring structure modulo indeterminacy.
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Example 3 (continued): Coproduct on I’

“Cartan formula” is encoded by a coproduct.

Cocommutative coalgebra structure on I’
e:T = Eyand A: T — gl ® g by

€(Q) =1 €Q)=0=¢Q2)

A(Q)=Q®Q+2Q1® @ +2Qx: 0
AQ)=QQU+QxOQ+ai @@ +a@® Q1 +2Q:® Qs
A@)=QAQ+RRQ+ Q@ +aQ® @

(e,M ® g,N means tensor using left-module structures.)
Coproduct and product “commute”.

I is a twisted bialgebra over Ey (like a Hopf algebra, but Egp isn't central).
Left M-modules have a symmetric monoidal tensor product: M ®g, N.
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Example 3: Summary

Definition

A T-ring is a commutative ring object in -modules.

Definition

An amplified I-ring is a [-ring B equipped with §: B — B such that
Qo(x) = x2 + 20(x) (together with formulas for 0(x + y), O(xy), (ax)).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, moA naturally has the
structure of an amplified -ring.
moLk2)Pe(E) = Fé Y with F = free amplified I'-ring on one generator.

This can be extended to non-zero degrees:
A is a graded amplified '-ring, etc.
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The general pattern

This is the general pattern for any Morava E-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

7, of a K(n)-local commutative E-algebra is a graded amplified I-ring:
o [ is a certain twisted bialgebra over Ep.
@ Qo €T and 6 such that Qp(x) = xP + pf(x).
o MilknPe(XIE) =~ Fp,
F = free graded amplified I'-ring on one generator in dim. q.

Questions / topics

@ How does the formal group of E produce I'? (Ando, Hopkins,
Strickland)

@ Where does the “congruence” come from? (R.)
© What is the algebraic structure of '? (quadratic? Koszul?) (R.)
@ Logarithms and Hecke operators. (R., Ganter)

v
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Topic 1: Formal groups and operations

E = even periodic ring spectrum = formal group Gg.

Formal group Gg of E

Formal scheme Gg = Spf(EOCP™) over moE.
Group law Gg x Gg — Gg defined by

p*: EOCP>® — E°(CP™ x CP*) ~ E°CP®®g, ECCP>.

p: CP* x CP*® — CP*° classifies ® of line bundles.

Additive and multiplicative transformation of functors:

EO(X) P FO(X) — g*GE P* GF

1* = homomorphism of formal groups over Fy,
where g = 1)1 E0(x) — FO(x).
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Topic 1: Deformations & Morava E-theory

Let Gy = height n formal group over perfect field k, chark = p, n < occ.
Let R = complete local ring, 7: R — R/m.

A deformation of Gy to R is (G, i,):
o G a formal group over R,
@ i: k— R/m,
e 1. TG =5 i* Gy iso of formal groups over R/m.

v

Theorem (Lubin-Tate)

There is a universal example of a deformation of Gy, defined over
Eo ~ ka[[ul, 500y Un—l]]-

v

Theorem (Morava; Hopkins-Miller)

Given Gy/k, there is a corresponding even periodic commutative S-algebra
E = Eg,/k, whose formal group is the universal deformation of Go.

v
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Topic 1: Deformations of Frobenius

Frobenius. ¢: k — k defined by ¢(x) = xP.
Relative Frobenius. Frob: Gy — ¢*Gy.

Definition
A deformation of Frobenius (G,i,v) — (G',i’,v") (of deformations of
Go to R) is a homomorphism f: G — G’ of formal groups over R, such
that

m*(f) ,
*G—> ™G *>R/m

Y

G i
0 i (Frobr) ! Go

commute for some r > 0.
(m: R — R/m.)

Remark: Deformations of Frobenius with domain (G, i,1) correspond
exactly to finite subgroup schemes of G. (f ~» Ker(f) C G.)
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Topic 1: Formal groups and power operations

E = EGy/k- Power map:

EOX 7 EO(X) ®g, E%(BEm) —— E°X ®g, E°BY /1

Kiinneth isomorphism, if E°BY, is finite and flat over £y (true for
Morava E-theory).
| is the "“transfer ideal”:

I= Y Tmage [EOB(Z,- X E ;) ansfer, EOBzm}.

0<i<m

Proposition
7P™: E°X — E°X ®go E°BY,,,/ is a ring homomorphism.

Remark: E°BY,/I = 0 unless m = p".
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Topic 1: The associated homomorphism

Let (Fn)°(X) = E°X ®po EOBE /1.

Ring homomorphisms:
e s*: Ey — (Fm)o, induced by BX ,, — .

o t*: Ey — (Fm)o, defined by 7P™: E%(x) — E°(x) @g, EO(BZm)/I.

The ring operation
0 TP™ 0 * (rPm)” *
E°(X) —— (Fm)"(X) - t*Gg +— s*Gg

produces a homomorphism of formal groups defined over (Fp,)o.

What is this homomorphism?
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Topic 1: Deformations of Frobenius, revisited

Let m=p", r>0. Letj: + — BY,.

EOX 22 EOX @g, E9(BE ) —— E°X ®g, E°BE /|
X+—xP
EOX RKE, EO(*) — S E% QE, Eo/p
Using the “double coset formula”, have
E°BY /(I + Ker(j*)) ~ Eo/p.

Thus
PP’ (x) = xP’ (in E9X/(p)).

(TPP")*: s*Gg — t*GE is a deformation of Frobenius.
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Topic 1: Strickland's Theorem

Theorem (Strickland (1998))

The homomorphism (TPp)*: s*Gg — t*Gg over (Fpr)o is the universal
example of a deformation of Frob" between deformations of Gy.

Remember: deformations of Frobenius correspond to finite subgroups of
the domain.
Strickland actually proved the following statement:

Theorem (Strickland (1998))

The data (s* Gg, Ker(7Ppr)*) over (Fpr)o is the universal example of a pair
(G, H) consisting of a deformation G of Gy and a finite subgroup scheme
H c G of rank m=p".
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Topic 1: Descent (Ando-Hopkins-Strickland (mid 90s7?))

D(R) {Objects: deformations (G, i, ) of Go/k to R,
Morphisms: deformations of Frobenius.

f:R— R = f*: D(R) — D(R').
A sheaf of modules M on D = {D(R)} consists of

e functors Mg: D(R)°P — Modg,

@ natural isomorphisms M¢: R’ @p Mg = Mg/ o f*,
satisfying obvious “coherence” axioms.
= symmetric monoidal category Modp of sheaves of modules.

Let I = ring of additive power operations for E.
Thatis, I C @,,5 Eg' BXm consisting of a such that Q, is additive.

Equivalence Modp ~ Modr of symmetric monoidal categories.
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Example 3, revisited: Definition of Q;

o Co/Fy = elliptic curve in P? defined by Y2Z 4 YZ? = X3.

— E = Ea/F2.

Proposition

(F2)o = E°BY, /1 = (Zs[a])[d]/(d® — ad — 2).

o Write ,
EOX TE5 (EOX)[d]/(d® — ad — 2)

x = TP?(x) = Qo(x) + Qi(x) d + @(x) d°.

e 7P? is a ring homomorphism = Cartan formulas.
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Example 3, revisited: Subgroups of order 2

@ Universal deformation of Cy/Fy:
C/Ey = elliptic curve defined over Eg = Z[a], by

Y2Z +aXYZ + YZ? = X5.
o Affine chart: u=X/Y,v=2/Y.

v—|—auv—|—v2:u3.

(Basepoint is at (v, v) = (0,0).)

@ Subgroup schemes of rank 2: “generated” by points P of C of form
(u(P),v(P)) = (d,—d®) such that d® — ad —2 = 0.

@ These are also finite subgroups of the formal completion C, so

(F2)o = E°BY, /1 ~ (Zs[a])[d]/(d® — ad — 2).
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Example 3, revisited: The homomorphism

e Given P € C with (u(P),v(P)) = (d,—d3), d®* —ad —2 =0
— isogeny 1p: C — C’ such that Ker(yp) = (P).

vtaw+v? =0} = {V 4+ (&% +3d — ad®) 'V +v? = u?}
e Definition of ¥p: if @ = ¥p(Q), then
(@) =—u(Qu(Q+P),  V(Q)=v(QV(Q+P).

By construction, ¥p is a deformation of Frobenius:
if d =0, then ¢'(Q") = u(Q)? and v'(Q') = v(Q)>.

e — computation of t*: Eg — (F2)o:

t*(a) = 7P?(a) = a°> + 3d — ad”,

7P?(ax) = 7P?(a) - TP?(x) =

Qo(ax) + Q1(ax) d + Q2(ax) d?
= (a% 4+ 3d — ad®) (Qo(x) + Qu(x) d + Qx(x) d?).

Charles Rezk (UIUC) Power operations May 2, 2009 24 / 44



Topic 2: The Frobenius congruence (Example 3)

In Example 3, we have

Proposition

Qo(x) = x> mod 2.

In the example:

EOx 22 EOX g, E9(BE,) —— (EOX)[d]/(d3 — ad — 2)
\ lid@j* J{d»—»O
E°X ®g, EO(x) ——————— EoX/(2)
Formula:
(TP?)(x) = Qo(x) + Qu(x) d + Qa(x) d°,

pass to Eg/2:
x? = Qo(x) mod 2.
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Topic 2: Frobenius is a deformation of Frobenius

(G,i,v) = deformation of Gy/k to R.
When R D Fp, there is a relative Frobenius homomorphism

Frob: G — ¢*G

(G,i,¢) = (¢7G,i¢,¢*(¢)) in D(R).

Observation

Universal example of Frob: G — ¢*G is determined by

m: E°BY,/I — Ey/p.
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Topic 2: Frobenius congruence for sheaves

Definition
A sheaf of commutative rings B on D is a Frobenius sheaf if for every
R > F, and G € D(R),

BR (FI‘Ob)
—

Br(G) Br(¢*G) =~ R® ®@r Br(G)

is the relative Frobenius homomorphism of R-algebras.

Theorem (R.)

There is a functor
{amplified T -rings} — { Frobenius sheaves on D}

which restricts to an equivalence between the full subcategories of
p-torsion free objects.

\
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Topic 3: Koszul algebras

A=, Ar graded associative ring, Ag = R commutative.

A is Koszul if there exist R-modules C, with C; = R, and an exact
sequence (a “Koszul complex”)

ARG L ARRG L ARG L ARRG L R0

of left A-modules such that d raises degree by 1.

If Ais Koszul, then

Ax TR(Al)/(U), Uc A

(i.e., Ais “quadratic”.)
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Topic 3: Koszul algebras (Example 3)

@ Back to the example: '~ @ T, = Tg,(I'1)/(U), where
M = Eo{Qo, @1, @2}, U = Adem relations.

e PBW Theorem (Priddy (1970)): if I has a “nice” admissible basis,
then I is Koszul.

@ — Exact sequence.
0=-T®g G—-T®wg GG =T — E—0.

C; are free modules over Ey: rank(C; = 3, rank G = 2.
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Topic 3: Is ' always Koszul?

Theorem (Ando-Hopkins-Strickland(?), R.)

For all E = Eg, k., the associated ring ' of power operations is Koszul.
The associated Koszul complex has the form

0-TIT®gCi— - =2TT® G—T — E—0,

where n = height of G.

@ They developed a program to prove the result, using interesting ideas
about a kind of “Bruhat-Tits building” formed using flags of certain
finite subgroup schemes of Gg.

o | don't believe they ever completed their program; there is probably
no obstruction to doing so, however.

@ There is another proof, which avoids using formal group theory; it
uses ideas related to the Whitehead conjecture (Kuhn, Mitchell,
Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).
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Topic 3: Linearization

Here are some of the ideas in the proof.

Definition
Given a (nonadditive) functor F: Modg, — Modg,, the linearization
L[F]: Modg, — Modg, is

F(7T1+7T2)
L[F](M) = Cok | F(M & M) - F(M)
F(m1)+F(m2)

L[F] is initial additive quotient functor of F.

v

In some cases, including ours, L[F o G] — L[F] o L[G] is an isomorphism.
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Topic 3: Linearization of the amplified I-ring monad

e F: Modg, — Modg, the free amplified '-ring functor.

o For E-module M with m,M = free E.-module concentrated in even
degree,

F(moM) ~ @ oL k(n)PE(M).

m>0
LIFI(Eo) = A.
LIFo- - - o Fl(Eg) = A®E, - - ®F A.

A is a ring, non-canonically isomorphic to .
@ Monadic bar construction Be(F, F, F).

L[Be(F, F,F)] = Be(A, A, A).
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Topic 3: Koszul rings and the bar construction

(Priddy 1970):
o If A is a graded ring, filter Bo(M, A, N) according to grading on A.
o A is Koszul if gr,Be(Eo, A, Eg) has homology concentrated in degree
qg.
@ Koszul complex “is” the spectral sequence associated to this filtration
on Be(M, A, N); E? = chain complex.
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Topic 3: Partition poset

By(F,F,F)(Eo) = (Fo--oF)(E)~ @ ES (Kq(m)ps,,)-

m>0

Ke(m) is the partition complex:

Ke(m) = nerve {poset of partitions of {1,...,m}}.

Bq(A, A, A) ~ L[Bq(F, F, F)I(Eo) = P Qm(Kq(m))

m>0
where
Qm(X) = Cok @ ES (Xn(z; x5 ) — ES (Xnza) |
0<i<m

X is a set with X, action.
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Topic 3: The idea of the proof

Keo(m) = Keo(m)/ ~, associated to Be(Ep, A, Eg) ~ Be(A, A, A)/ ~.
Qm(Ke(m)) =0 if m# p.
Need to show Qur(Ke(p")) has H. concentrated in degree r.

Ke(P") X Epr /(Ep -+ 0 Xp) — Ke(p"),
where
e = U (K(p") x T/ (Tt 15

ACZpr
max. ab. subgp.

o Reduce to showing Q,r(Us(p")) is chain homotopy equivalent to a
complex concentrated in degree r.

° Elaim: There is a ¥ pr-equivariant homotopy equivalence
Ue(p") = X+ A'S", where X is a X pr-set.
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Topic 3: U.(p") and the Tits building for GL(r,FF,)

@ A C X, maximal abelian subgroup:
Ko(p")* = nerve { poset of subgroups of A }.
For A= (Z/p)", the quotient K¢(p")” is (a 2-fold suspension of) the
Tits building for GL(r,Fp).

K .
* otherwise.

(')A~ {\/5’ if A~ (Z/p)",

A= (Z/p)" result is theorem of Solomon-Tits (1969).

e Show Ue(p") ~ X, A S" by the same “shellability” argument that
Solomon-Tits use for K,(p")%/P)".
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Topic 4: The operation W (Example 3)

We return to the main example (height 2, prime 2).

@ W < is element corresponding to the operation:
4 i
EOX TPL EOX g, (Fa)o =22 EOX g, E

where p: (Fa)o — Ep classifies [-2]: G — Gg
(since [-2](x) = x* mod (2, a), it is a deformation of Frobh?.)

oV =0QQ +aQQ: 2@ Q1 +2°2QQ—2aQ1Q +4QQy.

o V: B — B is a ring homomorphism.
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Topic 4: The operation N (Example 3)

e N: B — B corresponds to the operation:
2
EOX 55 EOX ®g, (Fo)o 2™ EOX.

(N is a “multiplicative Hecke operator”.)

N(x) = (Qox)3 +2a (Qox)2Q2x — a Qox( le)2 + a2 Qox( ng)2
— 6 Qo Qix Qox +2 (Q1X)3 —2a QlX(QQX)2 + 4(Q2X)3.

N( xy) = ( ) N(y), but N is not additive.
x) = x*V¥(x) mod 2.
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Topic 4: A logarithmic operation (Example 3)

o If x € B, then N(x) € B*, so N(x) = x>W¥(x) mod 2 implies

x?Y(x) _ o
NG 1 d 2.

@ For any 2-complete amplified -ring, get a homomorphism

(: B* — B,
N 1 o x?V(x)
— = .
2 %% | TN

o A= a K(2)-local commutative E-algebra, there is a map of spectra
gl;(A) — A.

On 7o, this map is given by /.

@ This works in a similar way at all heights and primes.
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Topic 4: Hecke operators

Now E is a general Morava E-theory (height n, prime p).
o Elements T(p*) €T, given by

EOX T2 EOX ®g, (Fyr)o ~2% EOX.
(First constructed by Ando (1992).)
o {T(p¥)} generate a commuative subring Z,[T1,..., T,] C T, where

-1
n

Z(_l)rpr(r—l)/2 7—r LU= Z '7"-(pk) . Uk

r=0 k>0

in FU].
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Topic 4: K(n)-localization of BG

Different construction of T(p¥), due to Ganter.
G = finite group.
@ The K(n)-local Tate homology of BG vanishes (Hovey-Strickland
(1999)):
Lk(mBGy = F(BGy, Lk(mS).
¢ = Lk, BGy is a commutative Frobenius algebra in the
K (n)-local homotopy category (Strickland (2000)).
(analogy between F(BGy, Lk(,)S) and representation ring RG.)
o Let Ig: LK(,,)S — LK(n)BG+, dual to LK(H)BG+ — LK(,,)S,
(analogous to ﬁTrace > gcc8: RG—Z.)

Charles Rezk (UIUC) Power operations May 2, 2009 41 / 44



Topic 4: Ganter's symmetric powers

@ Define ¢™ by

id®ls
EOX 25 EOX ®g, E9BY,, —™ E°X ®g, Eo.

@ ¢™: B — B are non-additive functions, analogous to symmetric
powers of representations.

Theorem (Ganter (2004))

) (x P
exp ZT(p—k)()-Up = Zam(x)~U’"

m>0

ST - 07 = log [ X 0" (x

k>0 m>0
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Topic 4: Hecke operators on K(n)-local S-algebras

Let R = a K(n)-local S-algebra.
o Ganter's operations ¢ are defined on moR for any K(n)-local S
algebra. (They are defined using a homotopy class in WOLK(,,)BZ;.)
@ — Ganter's formula gives a definition of Hecke operators on mgR for
any K(n)-local S-algebra.
@ By “suspension”, get Hecke operators acting on mqR for ¢ > 0 as
well.
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