Power operations in Morava *E*-theory a survey

Charles Rezk

University of Illinois at Urbana-Champaign

May 2, 2009

 $h^*=$ multiplicative cohomology theory: $h^p(X)\otimes h^q(X)\to h^{p+q}(X)$. m-th power map:

$$x \mapsto x^m \colon h^q(X) \to h^{mq}(X)$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^m :

$$h^{0}(X \times B\Sigma_{m})$$

$$\downarrow^{[*\rightarrow B\Sigma_{m}]}$$

$$h^{0}(X) \xrightarrow[x \mapsto x^{m}]{} h^{0}(X)$$

 P_m is multiplicative, not additive. Pairing with $\alpha \in h_0(B\Sigma_m)$ gives an operation $Q_\alpha \colon h^0(X) \to h^0(X)$

 $h^*=$ multiplicative cohomology theory: $h^p(X)\otimes h^q(X)\to h^{p+q}(X).$ m-th power map:

$$x \mapsto x^m \colon h^q(X) \to h^{mq}(X).$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^m :

$$h^{0}(X \times B\Sigma_{m})$$

$$\downarrow [*\rightarrow B\Sigma_{m}]$$

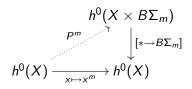
$$h^{0}(X) \xrightarrow[x \mapsto x^{m}]{} h^{0}(X)$$

 P_m is multiplicative, not additive. Pairing with $\alpha \in h_0(B\Sigma_m)$ gives an operation $Q_\alpha \colon h^0(X) \to h^0(X)$

 $h^*=$ multiplicative cohomology theory: $h^p(X)\otimes h^q(X)\to h^{p+q}(X)$. m-th power map:

$$x \mapsto x^m \colon h^q(X) \to h^{mq}(X).$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^m :



 P_m is multiplicative, not additive. Pairing with $\alpha \in h_0(B\Sigma_m)$ gives an operation $Q_\alpha \colon h^0(X) \to h^0(X)$.

 $h^*=$ multiplicative cohomology theory: $h^p(X)\otimes h^q(X)\to h^{p+q}(X)$. m-th power map:

$$x \mapsto x^m \colon h^q(X) \to h^{mq}(X).$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^m :

$$h^{0}(X \times B\Sigma_{m})$$

$$\downarrow^{P^{m}} \qquad \downarrow^{[* \to B\Sigma_{m}]}$$

$$h^{0}(X) \xrightarrow{x \mapsto x^{m}} h^{0}(X)$$

 P_m is multiplicative, not additive.

Pairing with $\alpha \in h_0(B\Sigma_m)$ gives an operation $Q_\alpha \colon h^0(X) \to h^0(X)$.

 $h^*=$ multiplicative cohomology theory: $h^p(X)\otimes h^q(X)\to h^{p+q}(X)$. m-th power map:

$$x \mapsto x^m \colon h^q(X) \to h^{mq}(X).$$

If h comes from a structured commutative ring spectrum, refine m-th power map to P^m :

$$h^{0}(X \times B\Sigma_{m}) \xrightarrow{/\alpha} h^{0}(X)$$

$$\downarrow^{[* \to B\Sigma_{m}]}$$

$$h^{0}(X) \xrightarrow[x \mapsto x^{m}]{} h^{0}(X)$$

 P_m is multiplicative, not additive.

Pairing with $\alpha \in h_0(B\Sigma_m)$ gives an operation $Q_\alpha \colon h^0(X) \to h^0(X)$.

Power operations from commutative *R*-algebras

R = commutative S-algebra.

 $M = \text{an } R\text{-module. Note: } [R, M]_R \approx [S, M]_S \approx \pi_0 M.$

Free commutative R-algebra on M:

$$\mathbb{P}_R M = \bigvee_{m \geq 0} \mathbb{P}_R^m M \approx \bigvee_{m \geq 0} \underbrace{(M \wedge_R \cdots \wedge_R M)}_{m \text{ times}} h_{\Sigma_m}$$

commutative R-algebra A= algebra for the monad \mathbb{P}_R , determined by

$$\mu\colon \mathbb{P}_R A \to A$$

Power operations from commutative R-algebras

R = commutative S-algebra.

M = an R-module. Note: $[R, M]_R \approx [S, M]_S \approx \pi_0 M$.

Free commutative R-algebra on M:

$$\mathbb{P}_R M = \bigvee_{m \geq 0} \mathbb{P}_R^m M \approx \bigvee_{m \geq 0} \underbrace{(M \wedge_R \cdots \wedge_R M)}_{m \text{ times}} h_{\Sigma_m}$$

commutative R-algebra A= algebra for the monad \mathbb{P}_R , determined by

$$\mu \colon \mathbb{P}_R A \to A$$

Power operations from commutative *R*-algebras

R = commutative S-algebra.

M = an R-module. Note: $[R, M]_R \approx [S, M]_S \approx \pi_0 M$.

Free commutative R-algebra on M:

$$\mathbb{P}_R M = \bigvee_{m \geq 0} \mathbb{P}_R^m M \approx \bigvee_{m \geq 0} \underbrace{(M \wedge_R \cdots \wedge_R M)}_{m \text{ times}} h_{\Sigma_m}$$

commutative R-algebra A= algebra for the monad \mathbb{P}_R , determined by

$$\mu\colon \mathbb{P}_R A\to A.$$

A =commutative R-algebra.

- Choose $\alpha \colon S \to \mathbb{P}^m_R(R) \approx R \land B\Sigma_m^+$ (map of spectra).
- Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

$$\mathbb{P}_{R}^{m}(R) \xrightarrow{\mathbb{P}_{R}^{m}(f_{X})} \mathbb{P}_{R}^{m}(A)$$

- $Q_{\alpha} : \pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_q A \to \pi_{q+r} A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B \Sigma_m^{q V_m}.$$

A =commutative R-algebra.

- Choose $\alpha \colon R \to \mathbb{P}^m_R(R) \approx R \land B\Sigma^+_m$ (map of R-modules).
- Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

•

$$\mathbb{P}_R^m(R) \xrightarrow{\mathbb{P}_R^m(f_{\mathsf{x}})} \mathbb{P}_R^m(A)$$

- $Q_{\alpha} : \pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_q A \to \pi_{q+r} A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B \Sigma_m^{q V_m}.$$

A =commutative R-algebra.

- Choose $\alpha \colon R \to \mathbb{P}^m_R(R) \approx R \land B\Sigma_m^+$ (map of R-modules).
- Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

$$\mathbb{P}_R^m(R) \xrightarrow{\mathbb{P}_R^m(f_{\times})} \mathbb{P}_R^m(A)$$

- $Q_{\alpha} : \pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_q A \to \pi_{q+r} A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B \Sigma_m^{q V_m}$$

A =commutative R-algebra.

- Choose $\alpha \colon R \to \mathbb{P}^m_R(R) \approx R \land B\Sigma_m^+$ (map of R-modules).
- Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

•

$$\mathbb{P}_R^m(R) \xrightarrow{\mathbb{P}_R^m(f_{\mathsf{x}})} \mathbb{P}_R^m(A)$$

- $Q_{\alpha} : \pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_q A \to \pi_{q+r} A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B \Sigma_m^{q V_m}$$

A = commutative R -algebra.

- Choose $\alpha \colon R \to \mathbb{P}^m_R(R) \approx R \land B\Sigma_m^+$ (map of R-modules).
- Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

•

$$R \xrightarrow{\alpha} \mathbb{P}_R^m(R) \xrightarrow{\mathbb{P}_R^m(f_x)} \mathbb{P}_R^m(A) \subset \mathbb{P}_R(A) \xrightarrow{\mu} A$$

 $Q_{\alpha}(x) \in \pi_0 A$ represented by composite.

- $Q_{\alpha} : \pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_q A \to \pi_{q+r} A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B \Sigma_m^{qV_m}$$

A =commutative R-algebra.

- Choose $\alpha \colon R \to \mathbb{P}^m_R(R) \approx R \land B\Sigma_m^+$ (map of R-modules).
- Represent $x \in \pi_0 A$ by $f_x : R \to A$.

•

$$R \xrightarrow{\alpha} \mathbb{P}_R^m(R) \xrightarrow{\mathbb{P}_R^m(f_x)} \mathbb{P}_R^m(A) \subset \mathbb{P}_R(A) \xrightarrow{\mu} A$$

 $Q_{\alpha}(x) \in \pi_0 A$ represented by composite.

- Q_{α} : $\pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_q A \to \pi_{q+r} A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B \Sigma_m^{q V_m}$$

A =commutative R-algebra.

- Choose $\alpha \colon R \to \mathbb{P}^m_R(R) \approx R \land B\Sigma_m^+$ (map of R-modules).
- Represent $x \in \pi_0 A$ by $f_x \colon R \to A$.

•

$$R \xrightarrow{\alpha} \mathbb{P}_R^m(R) \xrightarrow{\mathbb{P}_R^m(f_x)} \mathbb{P}_R^m(A) \subset \mathbb{P}_R(A) \xrightarrow{\mu} A$$

 $Q_{\alpha}(x) \in \pi_0 A$ represented by composite.

- Q_{α} : $\pi_0 A \to \pi_0 A$ may not be additive or multiplicative.
- Can get $Q_{\alpha} \colon \pi_{q}A \to \pi_{q+r}A$ from

$$\alpha \colon \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \approx R \wedge B\Sigma_m^{qV_m}.$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}.$

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

$$Q^r \colon \pi_q A \to \pi_{q+r} A$$
 such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{r,s} e^{i,j} Q^i Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}.$

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

$Q^r : \pi_a A \to \pi_{a+r} A$ such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{i=1}^{\infty} \epsilon_{r,s}^{i,j} Q^i Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}.$

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

$$Q^r \colon \pi_q A \to \pi_{q+r} A$$
 such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{i=1}^{\infty} \epsilon_{r,s}^{i,j} Q^i Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}$.

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

$$Q^r \colon \pi_a A \to \pi_{a+r} A$$
 such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{r,s} e^{i,j}_{r,s} Q^j Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}.$

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

 $Q^r \colon \pi_q A \to \pi_{q+r} A$ such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{r,s} e^{i,j}_{r,s} Q^i Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}$.

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

$$Q^r \colon \pi_q A \to \pi_{q+r} A$$
 such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{r,s} e^{i,j} Q^i Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

 $H = H\mathbb{F}_2 = \text{mod 2 Eilenberg Mac Lane spectrum}$.

A =commutative H-algebra spectrum.

 π_*A is a graded commutative \mathbb{F}_2 -algebra.

Operations on π_* of H-algebra

 $Q^r \colon \pi_q A \to \pi_{q+r} A$ such that

•
$$Q^r(x+y) = Q^r(x) + Q^r(y)$$
.

•
$$Q^r Q^s(x) = \sum_{r,s} e^{i,j} Q^i Q^j(x)$$
 if $r > 2s$, where $i \le 2j$.

•
$$Q^0(1) = 1$$
, $Q^r(1) = 0$ if $r \neq 0$.

•
$$Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$$
.

$$Q^r(x) = \begin{cases} x^2 & \text{if } r = q, \\ 0 & \text{if } r < q. \end{cases}$$

Example 1 (continued)

Special cases:

- Cochains on a space. $A = \operatorname{Func}(\Sigma_+^{\infty}X, H\mathbb{F}_2) \leadsto$ power operations are **Steenrod operations** on $H^*(X, \mathbb{F}_2)$.
- Chains on an infinite loop space. $A = H\mathbb{F}_2 \wedge \Sigma_+^{\infty} \Omega^{\infty} Y \rightsquigarrow$ power operations are Kudo-Araki-Dyer-Lashof operations on $H_*(\Omega^{\infty} Y, \mathbb{F}_2)$.

Example 1 (continued)

Special cases:

- Cochains on a space. $A = \operatorname{Func}(\Sigma_+^{\infty}X, H\mathbb{F}_2) \leadsto$ power operations are **Steenrod operations** on $H^*(X, \mathbb{F}_2)$.
- Chains on an infinite loop space. $A = H\mathbb{F}_2 \wedge \Sigma_+^{\infty} \Omega^{\infty} Y \rightsquigarrow$ power operations are Kudo-Araki-Dyer-Lashof operations on $H_*(\Omega^{\infty} Y, \mathbb{F}_2)$.

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^p \colon \pi_0 A \to \pi_0 A$ such that

- $\psi^p(x+y) = \psi^p(x) + \psi^p(y)$.
- $\psi^p(1) = 1$.
- $\psi^p(xy) = \psi^p(x)\psi^p(y)$.
- $\psi^p(x) \equiv x^p \mod p$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge} B\Sigma_p$

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^p \colon \pi_0 A \to \pi_0 A$ such that

•
$$\psi^p(x+y) = \psi^p(x) + \psi^p(y)$$
.

- $\psi^p(1) = 1$.
- $\psi^p(x) \equiv x^p \mod p$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge}B\Sigma_p$

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^{p} \colon \pi_{0}A \to \pi_{0}A$ such that

- $\psi^{p}(x+y) = \psi^{p}(x) + \psi^{p}(y)$.
- $\psi^p(1) = 1$.
- $\psi^p(x) \equiv x^p \mod p$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge}B\Sigma_p$

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^p \colon \pi_0 A \to \pi_0 A$ such that

- $\psi^p(x+y) = \psi^p(x) + \psi^p(y)$.
- $\psi^p(1) = 1$.
- $\bullet \ \psi^p(xy) = \psi^p(x)\psi^p(y).$
- $\psi^p(x) \equiv x^p \mod p$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge} B\Sigma_p$

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^p \colon \pi_0 A \to \pi_0 A$ such that

- $\psi^{p}(x+y) = \psi^{p}(x) + \psi^{p}(y)$.
- $\psi^p(1) = 1$.
- $\bullet \ \psi^p(xy) = \psi^p(x)\psi^p(y).$
- $\psi^p(x) \equiv x^p \mod p$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge}B\Sigma_p$.

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^p \colon \pi_0 A \to \pi_0 A$ such that

- $\psi^{p}(x+y) = \psi^{p}(x) + \psi^{p}(y)$.
- $\psi^p(1) = 1$.
- $\bullet \ \psi^p(xy) = \psi^p(x)\psi^p(y).$
- θ : $\pi_0 A \to \pi_0 A$ such that $\psi^p(x) = x^p + p \theta(x)$.

 ψ^p and heta correspond to elements of $lpha \in \mathcal{K}_0^\wedge B\Sigma_p$

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra A such that $A \approx A_p^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^{p} \colon \pi_{0}A \to \pi_{0}A$ such that

- $\psi^{p}(x+y) = \psi^{p}(x) + \psi^{p}(y)$.
- $\psi^p(1) = 1$.
- $\bullet \ \psi^p(xy) = \psi^p(x)\psi^p(y).$
- θ : $\pi_0 A \to \pi_0 A$ such that $\psi^p(x) = x^p + p \theta(x)$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge} B\Sigma_p$.

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

K = complex K-theory spectrum.p-complete K-algebra: commutative K-algebra such that $A \approx A_n^{\wedge}$.

Operations on π_0 of p-complete K-algebra

 $\psi^p \colon \pi_0 A \to \pi_0 A$ such that

- $\psi^{p}(x+y) = \psi^{p}(x) + \psi^{p}(y)$.
- $\psi^p(1) = 1$.
- $\bullet \ \psi^p(xy) = \psi^p(x)\psi^p(y).$
- θ : $\pi_0 A \to \pi_0 A$ such that $\psi^p(x) = x^p + p \theta(x)$.

 ψ^p and θ correspond to elements of $\alpha \in K_0^{\wedge} B\Sigma_p$.

$$K_q^{\wedge} X \stackrel{\text{def}}{=} \pi_q \left((K \wedge X)_p^{\wedge} \right).$$

Example 3: Morava E-theory (n = 2, p = 2)

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \widehat{C} .

$$\pi_* E \approx \mathbb{Z}_2[a][u, u^{-1}], \qquad |a| = 0, |u| = 2.$$

Note: $K(2) \approx E/(2, a)$ (Morava K-theory).

- E is a commutative S-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Example 3: Morava E-theory (n = 2, p = 2)

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \widehat{C} .

$$\pi_* E \approx \mathbb{Z}_2[a][u, u^{-1}], \qquad |a| = 0, |u| = 2.$$

Note: $K(2) \approx E/(2, a)$ (Morava K-theory).

- *E* is a commutative *S*-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Charles Rezk (UIUC) Power operations May 2, 2009

Example 3: Morava E-theory (n = 2, p = 2)

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \widehat{C} .

$$\pi_* E \approx \mathbb{Z}_2[a][u, u^{-1}], \qquad |a| = 0, |u| = 2.$$

Note: $K(2) \approx E/(2, a)$ (Morava K-theory).

- *E* is a commutative *S*-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Charles Rezk (UIUC) Power operations May 2, 2009

Example 3: Morava *E*-theory (n = 2, p = 2)

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \widehat{C} .

$$\pi_* E \approx \mathbb{Z}_2[a][u, u^{-1}], \qquad |a| = 0, |u| = 2.$$

Note: $K(2) \approx E/(2, a)$ (Morava K-theory).

- E is a commutative S-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Charles Rezk (UIUC) Power operations May 2, 2009

8 / 44

Example 3: Morava *E*-theory (n = 2, p = 2)

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \widehat{C} .

$$\pi_* E \approx \mathbb{Z}_2[a][u, u^{-1}], \qquad |a| = 0, |u| = 2.$$

Note: $K(2) \approx E/(2, a)$ (Morava K-theory).

- E is a commutative S-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Charles Rezk (UIUC) Power operations May 2, 2009

- C_0/\mathbb{F}_2 = supersingular elliptic curve.
- \widehat{C}_0 = formal completion formal group of height 2.
- E = Landweber exact spectrum associated to universal deformation of \widehat{C} .

$$\pi_* E \approx \mathbb{Z}_2[a][u, u^{-1}], \qquad |a| = 0, |u| = 2.$$

Note: $K(2) \approx E/(2, a)$ (Morava K-theory).

- E is a commutative S-algebra (Hopkins-Miller Theorem).
- Power operations constructed by Ando (1992).

Next slide: calculation of the algebraic structure of power operations for K(2)-local commutative E-algebras (R., prefigured by Kashiwabara 1995).

Charles Rezk (UIUC) Power operations May 2, 2009 8 / 44

A = K(2)-local commutative E-algebra $(\pi_0 A \text{ is an } E_0 = \mathbb{Z}_2[a]$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$Q_0,\,Q_1,\,Q_2\colon\pi_0A\to\pi_0A$$
 such that

•
$$Q_i(x + y) = Q_i(x) + Q_i(y)$$

 $Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_2Q_0(x) = Q_0Q_1(x) + aQ_0Q_2(x) - 2Q_1Q_2(x)$$

• $Q_0(1) = 1, Q_1(1) = Q_2(1) = 0$

$$Q_0(xy) = Q_0 \times Q_0 y + 2Q_1 \times Q_2 y + 2Q_2 \times Q_1 y$$

•
$$Q_1(xy) = Q_0 \times Q_1 y + Q_1 \times Q_0 y + aQ_1 \times Q_2 y + aQ_2 \times Q_1 y + 2Q_2 \times Q_2 y$$

 $Q_2(xy) = Q_0 \times Q_2 y + Q_2 \times Q_0 y + Q_1 \times Q_1 y + aQ_2 \times Q_2 y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2 \llbracket a \rrbracket$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$Q_0,\,Q_1,\,Q_2\colon\pi_0A o\pi_0A$ such that

•
$$Q_i(x+y) = Q_i(x) + Q_i(y)$$

 $Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_0(x)$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1Q_0(x) = 2 Q_2Q_1(x) - 2 Q_0Q_2(x)$$

 $Q_2Q_0(x) = Q_0Q_1(x) + a Q_0Q_2(x) - 2$

$$Q_2 Q_0(x) = Q_0 Q_1(x) + a Q_0 Q_2(x) - 2 Q_1$$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$
 $Q_0(xy) = Q_0xQ_0y + 2Q_1xQ_2y + 2Q_2xQ_1y$

•
$$Q_1(xy) = Q_0 \times Q_1 y + Q_1 \times Q_0 y + aQ_1 \times Q_2 y + aQ_2 \times Q_1 y + 2Q_2 \times Q_2 y$$

 $Q_2(xy) = Q_0 \times Q_2 y + Q_2 \times Q_0 y + Q_1 \times Q_1 y + aQ_2 \times Q_2 y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2[a]$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$\mathit{Q}_{0},\,\mathit{Q}_{1},\,\mathit{Q}_{2}\colon\pi_{0}\mathit{A}\to\pi_{0}\mathit{A}$$
 such that

$$Q_i(x+y) = Q_i(x) + Q_i(y)$$

$$Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_2Q_0(x) = Q_0Q_1(x) + aQ_0Q_2(x) - 2Q_1Q_2(x)$$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$

$$Q_0(xy) = Q_0 x Q_0 y + 2Q_1 x Q_2 y + 2Q_2 x Q_1 y$$

•
$$Q_1(xy) = Q_0 \times Q_1 y + Q_1 \times Q_0 y + aQ_1 \times Q_2 y + aQ_2 \times Q_1 y + 2Q_2 \times Q_2 y$$

 $Q_2(xy) = Q_0 \times Q_2 y + Q_2 \times Q_0 y + Q_1 \times Q_1 y + aQ_2 \times Q_2 y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2[a]$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$\mathit{Q}_{0},\,\mathit{Q}_{1},\,\mathit{Q}_{2}\colon\pi_{0}\mathit{A}\to\pi_{0}\mathit{A}$$
 such that

$$Q_i(x+y) = Q_i(x) + Q_i(y)$$

$$Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_2 Q_0(x) = Q_0 Q_1(x) + a Q_0 Q_2(x) - 2 Q_1 Q_2(x)$$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$

$$Q_0(xy) = Q_0 \times Q_0 y + 2Q_1 \times Q_2 y + 2Q_2 \times Q_1 y$$

•
$$Q_1(xy) = Q_0 \times Q_1 y + Q_1 \times Q_0 y + aQ_1 \times Q_2 y + aQ_2 \times Q_1 y + 2Q_2 \times Q_2 y$$

 $Q_2(xy) = Q_0 \times Q_2 y + Q_2 \times Q_0 y + Q_1 \times Q_1 y + aQ_2 \times Q_2 y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2[a]$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$\mathit{Q}_{0},\,\mathit{Q}_{1},\,\mathit{Q}_{2}\colon\pi_{0}\mathit{A}\to\pi_{0}\mathit{A}$$
 such that

$$Q_i(x+y) = Q_i(x) + Q_i(y)$$

$$Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1Q_0(x) = 2 Q_2Q_1(x) - 2 Q_0Q_2(x)$$

 $Q_2Q_0(x) = Q_0Q_1(x) + a Q_0Q_2(x) - 2 Q_1Q_2(x)$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$

•
$$Q_1(xy) = Q_0xQ_1y + Q_1xQ_0y + aQ_1xQ_2y + aQ_2xQ_1y + 2Q_2xQ_2y$$

 $Q_2(xy) = Q_0xQ_2y + Q_2xQ_0y + Q_1xQ_1y + aQ_2xQ_2y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2 \llbracket a \rrbracket$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$\mathit{Q}_{0},\,\mathit{Q}_{1},\,\mathit{Q}_{2}\colon\pi_{0}\mathit{A}\to\pi_{0}\mathit{A}$$
 such that

•
$$Q_i(x + y) = Q_i(x) + Q_i(y)$$

 $Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_2Q_0(x) = Q_0Q_1(x) + a Q_0Q_2(x) - 2 Q_1Q_2(x)$$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$
 $Q_0(xy) = Q_0xQ_0y + 2Q_1xQ_2y + 2Q_2xQ_1y$

•
$$Q_1(xy) = Q_0 \times Q_1 y + Q_1 \times Q_0 y + aQ_1 \times Q_2 y + aQ_2 \times Q_1 y + 2Q_2 \times Q_2 y$$

 $Q_2(xy) = Q_0 \times Q_2 y + Q_2 \times Q_0 y + Q_1 \times Q_1 y + aQ_2 \times Q_2 y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2 \llbracket a \rrbracket$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$\mathit{Q}_{0},\,\mathit{Q}_{1},\,\mathit{Q}_{2}\colon\pi_{0}\mathit{A}\to\pi_{0}\mathit{A}$$
 such that

•
$$Q_i(x + y) = Q_i(x) + Q_i(y)$$

 $Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_2 Q_0(x) = Q_0 Q_1(x) + a Q_0 Q_2(x) - 2 Q_1 Q_2(x)$$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$
 $Q_0(xy) = Q_0xQ_0y + 2Q_1xQ_2y + 2Q_2xQ_1y$

•
$$Q_1(xy) = Q_0 \times Q_1 y + Q_1 \times Q_0 y + aQ_1 \times Q_2 y + aQ_2 \times Q_1 y + 2Q_2 \times Q_2 y$$

 $Q_2(xy) = Q_0 \times Q_2 y + Q_2 \times Q_0 y + Q_1 \times Q_1 y + aQ_2 \times Q_2 y$

A = K(2)-local commutative E-algebra ($\pi_0 A$ is an $E_0 = \mathbb{Z}_2 \llbracket a \rrbracket$ -algebra).

Operations on π_0 of K(2)-local E-algebra

$$\mathit{Q}_{0},\,\mathit{Q}_{1},\,\mathit{Q}_{2}\colon\pi_{0}\mathit{A}\to\pi_{0}\mathit{A}$$
 such that

•
$$Q_i(x + y) = Q_i(x) + Q_i(y)$$

 $Q_0(ax) = a^2 Q_0(x) - 2a Q_1(x) + 6 Q_2(x)$

•
$$Q_1(ax) = 3 Q_0(x) + a Q_2(x)$$

 $Q_2(ax) = -a Q_0(x) + 3 Q_1(x)$

$$Q_1 Q_0(x) = 2 Q_2 Q_1(x) - 2 Q_0 Q_2(x)$$

$$Q_2 Q_0(x) = Q_0 Q_1(x) + a Q_0 Q_2(x) - 2 Q_1 Q_2(x)$$

•
$$Q_0(1) = 1$$
, $Q_1(1) = Q_2(1) = 0$

$$Q_0(xy) = Q_0 x Q_0 y + 2Q_1 x Q_2 y + 2Q_2 x Q_1 y$$

$$Q_1(xy) = Q_0xQ_1y + Q_1xQ_0y + aQ_1xQ_2y + aQ_2xQ_1y + 2Q_2xQ_2y$$
$$Q_2(xy) = Q_0xQ_2y + Q_2xQ_0y + Q_1xQ_1y + aQ_2xQ_2y$$

•
$$\theta$$
: $\pi_0 A \to \pi_0 A$ such that $Q_0(x) = x^2 + 2 \theta(x)$

The ring Γ of power operations

Associative ring containing $E_0 = \mathbb{Z}_2[\![a]\!]$ and generators Q_0, Q_1, Q_2 , and subject to relations

$$\begin{array}{l} Q_0 \ a = a^2 \ Q_0 - 2a \ Q_1 + 6 \ Q_2 \\ Q_1 \ a = 3 \ Q_0 + a \ Q_2 \\ Q_2 \ a = -a \ Q_0 + 3 \ Q_1 \end{array} \qquad \begin{array}{l} Q_1 \ Q_0 = 2 \ Q_2 \ Q_1 - 2 \ Q_0 \ Q_2 \\ Q_2 \ Q_0 = Q_0 \ Q_1 + a \ Q_0 \ Q_2 - 2 \ Q_1 \ Q_2 \end{array}$$

 Γ has "admissible basis" as left $\mathbb{Z}_2\llbracket a \rrbracket$ module

$$Q_0^i Q_{j_1} \cdots Q_{j_r}, \qquad i \ge 0, j_k \in \{1, 2\}$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma} = \mathbb{F}_2 \otimes_{\mathbb{Z}_2\llbracket a \rrbracket} \Gamma$. Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.) He describes ring structure modulo indeterminacy.

The ring Γ of power operations

Associative ring containing $E_0 = \mathbb{Z}_2\llbracket a \rrbracket$ and generators Q_0, Q_1, Q_2 , and subject to relations

$$Q_0 a = a^2 Q_0 - 2a Q_1 + 6 Q_2$$

 $Q_1 a = 3 Q_0 + a Q_2$
 $Q_2 a = -a Q_0 + 3 Q_1$
 $Q_1 Q_0 = 2 Q_2 Q_1 - 2 Q_0 Q_2$
 $Q_2 Q_0 = Q_0 Q_1 + a Q_0 Q_2 - 2 Q_1 Q_2$

 Γ has "admissible basis" as left $\mathbb{Z}_2[a]$ module:

$$Q_0^i Q_{j_1} \cdots Q_{j_r}, \qquad i \geq 0, j_k \in \{1, 2\}$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma} = \mathbb{F}_2 \otimes_{\mathbb{Z}_2\llbracket a \rrbracket} \Gamma$. Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.) He describes ring structure modulo indeterminacy.

10 / 44

The ring Γ of power operations

Associative ring containing $E_0 = \mathbb{Z}_2\llbracket a \rrbracket$ and generators Q_0, Q_1, Q_2 , and subject to relations

$$\begin{array}{l} Q_0 \ a = a^2 \ Q_0 - 2a \ Q_1 + 6 \ Q_2 \\ Q_1 \ a = 3 \ Q_0 + a \ Q_2 \\ Q_2 \ a = -a \ Q_0 + 3 \ Q_1 \end{array} \qquad \begin{array}{l} Q_1 \ Q_0 = 2 \ Q_2 \ Q_1 - 2 \ Q_0 \ Q_2 \\ Q_2 \ Q_0 = Q_0 \ Q_1 + a \ Q_0 \ Q_2 - 2 \ Q_1 \ Q_2 \end{array}$$

 Γ has "admissible basis" as left $\mathbb{Z}_2[a]$ module:

$$Q_0^i Q_{j_1} \cdots Q_{j_r}, \qquad i \geq 0, j_k \in \{1, 2\}$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma}=\mathbb{F}_2\otimes_{\mathbb{Z}_2\llbracket a\rrbracket}\Gamma.$

Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.) He describes ring structure modulo indeterminacy.

The ring Γ of power operations

Associative ring containing $E_0 = \mathbb{Z}_2\llbracket a \rrbracket$ and generators Q_0, Q_1, Q_2 , and subject to relations

$$Q_0 a = a^2 Q_0 - 2a Q_1 + 6 Q_2$$

 $Q_1 a = 3 Q_0 + a Q_2$
 $Q_2 a = -a Q_0 + 3 Q_1$
 $Q_1 Q_0 = 2 Q_2 Q_1 - 2 Q_0 Q_2$
 $Q_2 Q_0 = Q_0 Q_1 + a Q_0 Q_2 - 2 Q_1 Q_2$

 Γ has "admissible basis" as left $\mathbb{Z}_2[a]$ module:

$$Q_0^i Q_{j_1} \cdots Q_{j_r}, \qquad i \geq 0, j_k \in \{1, 2\}$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma} = \mathbb{F}_2 \otimes_{\mathbb{Z}_2\llbracket a \rrbracket} \Gamma$.

Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.)

He describes ring structure modulo indeterminacy.

Charles Rezk (UIUC) Power operations May 2, 2009 10 / 44

The ring Γ of power operations

Associative ring containing $E_0 = \mathbb{Z}_2\llbracket a \rrbracket$ and generators Q_0, Q_1, Q_2 , and subject to relations

$$Q_0 a = a^2 Q_0 - 2a Q_1 + 6 Q_2$$
 $Q_1 a = 3 Q_0 + a Q_2$ $Q_2 a = -a Q_0 + 3 Q_1$ $Q_1 Q_0 = 2 Q_2 Q_1 - 2 Q_0 Q_2$ $Q_2 Q_0 = Q_0 Q_1 + a Q_0 Q_2 - 2 Q_1 Q_2$

 Γ has "admissible basis" as left $\mathbb{Z}_2[a]$ module:

$$Q_0^i Q_{j_1} \cdots Q_{j_r}, \quad i \geq 0, j_k \in \{1, 2\}$$

Kashiwabara (1995): gives admissible basis for $\bar{\Gamma}=\mathbb{F}_2\otimes_{\mathbb{Z}_2\llbracket a\rrbracket}\Gamma.$

Problem: $\bar{\Gamma}$ is not a ring! (Kashiwabara knows this.)

He describes ring structure modulo indeterminacy.

Charles Rezk (UIUC) Power operations May 2, 2009 10 / 44

Example 3 (continued): Coproduct on Γ

"Cartan formula" is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

$$\epsilon\colon\Gamma\to \textit{E}_0$$
 and $\Delta\colon\Gamma\to\textit{E}_0\Gamma\otimes\textit{E}_0\Gamma$ by

$$\epsilon(Q_0)=1, \qquad \epsilon(Q_1)=0=\epsilon(Q_2)$$

$$\Delta(Q_0) = Q_0 \otimes Q_0 + 2Q_1 \otimes Q_2 + 2Q_2 \otimes Q_1$$

$$\Delta(Q_1) = Q_0 \otimes Q_1 + Q_1 \otimes Q_0 + aQ_1 \otimes Q_2 + aQ_2 \otimes Q_1 + 2Q_2 \otimes Q_2$$

$$\Delta(Q_2) = Q_0 \otimes Q_2 + Q_2 \otimes Q_0 + Q_1 \otimes Q_1 + aQ_2 \otimes Q_2$$

 $(E_0 M \otimes E_0 N \text{ means tensor using left-module structures.})$ Coproduct and product "commute".

Conclusion

Γ is a **twisted bialgebra** over E_0 (like a Hopf algebra, but E_0 isn't central). Left Γ-modules have a symmetric monoidal tensor product: $M \otimes_{E_0} N$.

11 / 44

Example 3 (continued): Coproduct on Γ

"Cartan formula" is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

$$\epsilon \colon \Gamma \to \textit{E}_0$$
 and $\Delta \colon \Gamma \to \textit{E}_0 \Gamma \otimes \textit{E}_0 \Gamma$ by

$$\epsilon(Q_0) = 1, \qquad \epsilon(Q_1) = 0 = \epsilon(Q_2)$$

$$\Delta(Q_0) = Q_0 \otimes Q_0 + 2Q_1 \otimes Q_2 + 2Q_2 \otimes Q_1$$

$$\Delta(Q_1) = Q_0 \otimes Q_1 + Q_1 \otimes Q_0 + aQ_1 \otimes Q_2 + aQ_2 \otimes Q_1 + 2Q_2 \otimes Q_2$$

$$\Delta(Q_2) = Q_0 \otimes Q_2 + Q_2 \otimes Q_0 + Q_1 \otimes Q_1 + aQ_2 \otimes Q_2$$

 $(E_0 M \otimes E_0 N)$ means tensor using left-module structures.) Coproduct and product "commute".

Conclusion

 Γ is a **twisted bialgebra** over E_0 (like a Hopf algebra, but E_0 isn't central).

Left Γ -modules have a symmetric monoidal tensor product: $M \otimes_{E_0} N$.

Example 3 (continued): Coproduct on Γ

"Cartan formula" is encoded by a coproduct.

Cocommutative coalgebra structure on Γ

$$\epsilon \colon \Gamma \to \textit{E}_0$$
 and $\Delta \colon \Gamma \to \textit{E}_0 \Gamma \otimes \textit{E}_0 \Gamma$ by

$$\epsilon(Q_0)=1, \qquad \epsilon(Q_1)=0=\epsilon(Q_2)$$

$$\Delta(Q_0) = Q_0 \otimes Q_0 + 2Q_1 \otimes Q_2 + 2Q_2 \otimes Q_1$$

$$\Delta(Q_1) = Q_0 \otimes Q_1 + Q_1 \otimes Q_0 + aQ_1 \otimes Q_2 + aQ_2 \otimes Q_1 + 2Q_2 \otimes Q_2$$

$$\Delta(Q_2) = Q_0 \otimes Q_2 + Q_2 \otimes Q_0 + Q_1 \otimes Q_1 + aQ_2 \otimes Q_2$$

 $(E_0 M \otimes E_0 N)$ means tensor using left-module structures.) Coproduct and product "commute".

Conclusion

 Γ is a **twisted bialgebra** over E_0 (like a Hopf algebra, but E_0 isn't central). Left Γ -modules have a symmetric monoidal tensor product: $M \otimes_{E_0} N$.

Definition

A Γ -ring is a commutative ring object in Γ -modules.

Definition

An **amplified** Γ -ring is a Γ -ring B equipped with $\theta: B \to B$ such that $Q_0(x) = x^2 + 2\theta(x)$ (together with formulas for $\theta(x + y)$, $\theta(xy)$, $\theta(ax)$).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, $\pi_0 A$ naturally has the structure of an amplified Γ -ring.

 $\pi_0 L_{K(2)} \mathbb{P}_E(E) \approx F_{(2,a)}^{\wedge}$, with F = free amplified Γ -ring on one generator.

This can be extended to non-zero degrees:

 $π_*A$ is a graded amplified Γ-ring, etc

Definition

A Γ -ring is a commutative ring object in Γ -modules.

Definition

An **amplified** Γ -**ring** is a Γ -ring B equipped with $\theta \colon B \to B$ such that $Q_0(x) = x^2 + 2\theta(x)$ (together with formulas for $\theta(x + y)$, $\theta(xy)$, $\theta(ax)$).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, $\pi_0 A$ naturally has the structure of an amplified Γ -ring.

 $\pi_0 L_{K(2)} \mathbb{P}_E(E) \approx F_{(2,a)}^{\wedge}$, with F = free amplified Γ -ring on one generator.

This can be extended to non-zero degrees:

 π_*A is a **graded amplified L-ring**, etc

Definition

A Γ -ring is a commutative ring object in Γ -modules.

Definition

An **amplified** Γ -**ring** is a Γ -ring B equipped with $\theta \colon B \to B$ such that $Q_0(x) = x^2 + 2\theta(x)$ (together with formulas for $\theta(x + y)$, $\theta(xy)$, $\theta(ax)$).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, π_0A naturally has the structure of an amplified Γ -ring.

 $\pi_0 L_{K(2)} \mathbb{P}_E(E) \approx F_{(2,a)}^{\wedge}$, with $F = \text{free amplified } \Gamma\text{-ring on one generator.}$

This can be extended to non-zero degrees:

Definition

A Γ -ring is a commutative ring object in Γ -modules.

Definition

An **amplified** Γ -**ring** is a Γ -ring B equipped with $\theta \colon B \to B$ such that $Q_0(x) = x^2 + 2\theta(x)$ (together with formulas for $\theta(x + y)$, $\theta(xy)$, $\theta(ax)$).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, π_0A naturally has the structure of an amplified Γ -ring.

 $\pi_0 L_{K(2)} \mathbb{P}_E(E) pprox F^\wedge_{(2,a)}$, with F= free amplified Γ -ring on one generator.

This can be extended to non-zero degrees: π_*A is a **graded amplified** Γ -ring, etc.

Definition

A Γ -ring is a commutative ring object in Γ -modules.

Definition

An **amplified** Γ -**ring** is a Γ -ring B equipped with $\theta \colon B \to B$ such that $Q_0(x) = x^2 + 2\theta(x)$ (together with formulas for $\theta(x + y)$, $\theta(xy)$, $\theta(ax)$).

In summary:

Proposition

For A a K(2)-local commutative E-algebra, π_0A naturally has the structure of an amplified Γ -ring.

 $\pi_0 L_{K(2)} \mathbb{P}_E(E) \approx F_{(2,a)}^{\wedge}$, with F = free amplified Γ -ring on one generator.

This can be extended to non-zero degrees:

 $π_*A$ is a graded amplified Γ-ring, etc.

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q.$

- **1** How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- 2 Where does the "congruence" come from? (R.)
- ③ What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q.$

- How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- ② Where does the "congruence" come from? (R.)
- ③ What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q.$

- **1** How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- Where does the "congruence" come from? (R.)
- ③ What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma\text{-ring on one generator in dim. } q$.

- How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- Where does the "congruence" come from? (R.)
- What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q$.

- How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- 2 Where does the "congruence" come from? (R.)
- 3 What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q$.

- How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- 2 Where does the "congruence" come from? (R.)
- ③ What is the algebraic structure of Γ ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava E-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -**ring**:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q$.

- How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- 2 Where does the "congruence" come from? (R.)
- 3 What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

This is the general pattern for any Morava *E*-theory spectrum.

Power operations for Morava E-theory (height n, prime p)

 π_* of a K(n)-local commutative E-algebra is a **graded amplified** Γ -ring:

- Γ is a certain twisted bialgebra over E_0 .
- $Q_0 \in \Gamma$ and θ such that $Q_0(x) = x^p + p \theta(x)$.
- $\pi_* L_{K(n)} \mathbb{P}_E(\Sigma^q E) \approx F_{\mathfrak{m}}^{\wedge}$, $F = \text{free graded amplified } \Gamma \text{-ring on one generator in dim. } q$.

- How does the formal group of E produce Γ ? (Ando, Hopkins, Strickland)
- 2 Where does the "congruence" come from? (R.)
- 3 What is the algebraic structure of Γ? (quadratic? Koszul?) (R.)
- 4 Logarithms and Hecke operators. (R., Ganter)

 $E = \text{even periodic ring spectrum} \Longrightarrow \text{formal group } G_E.$

Formal group G_E of E

Formal scheme $G_E=\mathrm{Spf}(E^0\mathbb{CP}^\infty)$ over π_0E

Group law $G_E imes G_E o G_E$ defined by

$$\mu^* \colon E^0 \mathbb{CP}^\infty \to E^0 (\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \approx E^0 \mathbb{CP}^\infty \widehat{\otimes}_{E_0} E^0 \mathbb{CP}^\infty.$$

 $\mu \colon \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ classifies \otimes of line bundles

$$E^0(X) \xrightarrow{\psi} F^0(X)$$

E= even periodic ring spectrum \Longrightarrow formal group G_E .

Formal group G_E of E

Formal scheme $G_E = \operatorname{Spf}(E^0 \mathbb{CP}^{\infty})$ over $\pi_0 E$

Group law $G_E imes G_E o G_E$ defined by

$$\mu^* \colon E^0 \mathbb{CP}^\infty \to E^0 (\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \approx E^0 \mathbb{CP}^\infty \widehat{\otimes}_{E_0} E^0 \mathbb{CP}^\infty.$$

 $\mu \colon \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ classifies \otimes of line bundles

$$E^0(X) \xrightarrow{\psi} F^0(X)$$

 $E = \text{even periodic ring spectrum} \Longrightarrow \text{formal group } G_E.$

Formal group G_E of E

Formal scheme $G_E = \operatorname{Spf}(E^0 \mathbb{CP}^{\infty})$ over $\pi_0 E$.

Group law $G_E \times G_E \rightarrow G_E$ defined by

$$\mu^* \colon E^0 \mathbb{CP}^\infty \to E^0(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \approx E^0 \mathbb{CP}^\infty \widehat{\otimes}_{E_0} E^0 \mathbb{CP}^\infty.$$

 $\mu \colon \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ classifies \otimes of line bundles.

$$E^0(X) \xrightarrow{\psi} F^0(X)$$

 $E = \text{even periodic ring spectrum} \Longrightarrow \text{formal group } G_E.$

Formal group G_E of E

Formal scheme $G_E = \operatorname{Spf}(E^0 \mathbb{CP}^{\infty})$ over $\pi_0 E$.

Group law $G_E \times G_E \rightarrow G_E$ defined by

$$\mu^*\colon E^0\mathbb{CP}^\infty\to E^0(\mathbb{CP}^\infty\times\mathbb{CP}^\infty)\approx E^0\mathbb{CP}^\infty\widehat{\otimes}_{E_0}E^0\mathbb{CP}^\infty.$$

 $\mu \colon \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ classifies \otimes of line bundles.

$$E^0(X) \xrightarrow{\psi} F^0(X)$$

E= even periodic ring spectrum \Longrightarrow formal group G_E .

Formal group G_E of E

Formal scheme $G_E = \operatorname{Spf}(E^0 \mathbb{CP}^{\infty})$ over $\pi_0 E$.

Group law $G_E \times G_E \rightarrow G_E$ defined by

$$\mu^* \colon E^0 \mathbb{CP}^\infty \to E^0(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \approx E^0 \mathbb{CP}^\infty \widehat{\otimes}_{E_0} E^0 \mathbb{CP}^\infty.$$

 $\mu \colon \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ classifies \otimes of line bundles.

Additive and multiplicative transformation of functors:

$$E^0(X) \xrightarrow{\psi} F^0(X) \Longrightarrow g^*G_E \xleftarrow{\psi^*} G_F$$

 $\psi^* = \text{homomorphism of formal groups over } F_0,$ where $g = \psi \colon E^0(*) \to F^0(*).$

Let G_0 = height n formal group over perfect field k, $\operatorname{char} k = p$, $n < \infty$. Let R = complete local ring, $\pi \colon R \to R/\mathfrak{m}$.

Definition

A **deformation** of G_0 to R is (G, i, ψ) :

- \bullet G a formal group over R,
- $i: k \to R/\mathfrak{m}$,
- $\psi \colon \pi^* G \xrightarrow{\sim} i^* G_0$ iso of formal groups over R/\mathfrak{m} .

Theorem (Lubin-Tate)

There is a universal example of a deformation of G_0 , defined over $E_0 \approx \mathbb{W}_p k[\![u_1, \ldots, u_{n-1}]\!]$.

Theorem (Morava; Hopkins-Miller)

Given G_0/k , there is a corresponding even periodic commutative S-algebra $E = E_{G_0/k}$, whose formal group is the universal deformation of G_0 .

15 / 44

Let $G_0 = \text{height } n \text{ formal group over perfect field } k, \operatorname{char} k = p, n < \infty.$ Let $R = \text{complete local ring, } \pi \colon R \to R/\mathfrak{m}.$

Definition

A **deformation** of G_0 to R is (G, i, ψ) :

- G a formal group over R,
- $i: k \to R/\mathfrak{m}$,
- $\psi \colon \pi^* G \xrightarrow{\sim} i^* G_0$ iso of formal groups over R/\mathfrak{m} .

$\mathsf{Theorem}\;(\mathsf{Lubin} ext{-}\mathsf{Tate})$

There is a universal example of a deformation of G_0 , defined over $E_0 \approx \mathbb{W}_p k[\![u_1, \ldots, u_{n-1}]\!]$.

Theorem (Morava; Hopkins-Miller)

Given G_0/k , there is a corresponding even periodic commutative S-algebra $E = E_{G_0/k}$, whose formal group is the universal deformation of G_0 .

Let $G_0 = \text{height } n \text{ formal group over perfect field } k, \operatorname{char} k = p, n < \infty.$ Let $R = \text{complete local ring, } \pi \colon R \to R/\mathfrak{m}.$

Definition

A **deformation** of G_0 to R is (G, i, ψ) :

- G a formal group over R,
- $i: k \to R/\mathfrak{m}$,
- $\psi \colon \pi^* G \xrightarrow{\sim} i^* G_0$ iso of formal groups over R/\mathfrak{m} .

Theorem (Lubin-Tate)

There is a universal example of a deformation of G_0 , defined over $E_0 \approx \mathbb{W}_p k[\![u_1, \ldots, u_{n-1}]\!]$.

Theorem (Morava; Hopkins-Miller)

Given G_0/k , there is a corresponding even periodic commutative S-algebra $E=E_{G_0/k}$, whose formal group is the universal deformation of G_0 .

Let G_0 = height n formal group over perfect field k, $\operatorname{char} k = p$, $n < \infty$. Let R = complete local ring, $\pi \colon R \to R/\mathfrak{m}$.

Definition

A **deformation** of G_0 to R is (G, i, ψ) :

- G a formal group over R,
- $i: k \to R/\mathfrak{m}$,
- $\psi \colon \pi^* G \xrightarrow{\sim} i^* G_0$ iso of formal groups over R/\mathfrak{m} .

Theorem (Lubin-Tate)

There is a universal example of a deformation of G_0 , defined over $E_0 \approx \mathbb{W}_p k[\![u_1, \ldots, u_{n-1}]\!]$.

Theorem (Morava; Hopkins-Miller)

Given G_0/k , there is a corresponding even periodic commutative S-algebra $E = E_{G_0/k}$, whose formal group is the universal deformation of G_0 .

15 / 44

Topic 1: Deformations of Frobenius

Frobenius. $\phi: k \to k$ defined by $\phi(x) = x^p$.

Relative Frobenius. Frob: $G_0 \rightarrow \phi^* G_0$.

Definition

A **deformation of Frobenius** $(G, i, \psi) \rightarrow (G', i', \psi')$ (of deformations of G_0 to R) is a homomorphism $f: G \rightarrow G'$ of formal groups over R, such that

$$\pi^* G \xrightarrow{\pi^*(f)} \pi^* G'$$

$$\psi \downarrow \sim \qquad \qquad \downarrow \psi'$$

$$i^* G_0 \xrightarrow{i^*(\operatorname{Frob}')} i'^* G_0$$

commute for some $r \ge 0$.

$$(\pi\colon R\to R/\mathfrak{m}.)$$

Remark: Deformations of Frobenius with domain (G, i, ψ) correspond exactly to finite subgroup schemes of G. $(f \leadsto \operatorname{Ker}(f) \subset G)$

Topic 1: Deformations of Frobenius

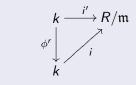
Frobenius. $\phi \colon k \to k$ defined by $\phi(x) = x^p$.

Relative Frobenius. Frob: $G_0 \rightarrow \phi^* G_0$.

Definition

A **deformation of Frobenius** $(G, i, \psi) \rightarrow (G', i', \psi')$ (of deformations of G_0 to R) is a homomorphism $f: G \rightarrow G'$ of formal groups over R, such that

$$\begin{array}{ccc}
\pi^* G & \xrightarrow{\pi^*(f)} & \pi^* G' \\
\psi \downarrow \sim & & \sim \downarrow \psi' \\
i^* G_0 & \xrightarrow{i^*(\text{Frob}')} & i'^* G_0
\end{array}$$



commute for some $r \ge 0$.

 $(\pi\colon R\to R/\mathfrak{m}.)$

Remark: Deformations of Frobenius with domain (G, i, ψ) correspond exactly to finite subgroup schemes of G. $(f \leadsto \operatorname{Ker}(f) \subset G)$

Topic 1: Deformations of Frobenius

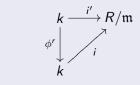
Frobenius. $\phi \colon k \to k$ defined by $\phi(x) = x^p$.

Relative Frobenius. Frob: $G_0 \rightarrow \phi^* G_0$.

Definition

A **deformation of Frobenius** $(G, i, \psi) \rightarrow (G', i', \psi')$ (of deformations of G_0 to R) is a homomorphism $f: G \rightarrow G'$ of formal groups over R, such that

$$\begin{array}{ccc}
\pi^* G & \xrightarrow{\pi^*(f)} & \pi^* G' \\
\psi \downarrow \sim & & \sim \downarrow \psi' \\
i^* G_0 & \xrightarrow{i^*(\text{Frob}')} & i'^* G_0
\end{array}$$



commute for some $r \ge 0$.

$$(\pi\colon R\to R/\mathfrak{m}.)$$

Remark: Deformations of Frobenius with domain (G, i, ψ) correspond exactly to finite subgroup schemes of G. $(f \leadsto \operatorname{Ker}(f) \subset G)$

 $E = E_{G_0/k}$. Power map:

$$E^0X \xrightarrow{P^m} E^0(X \times B\Sigma_m)$$

Künneth isomorphism, if $E^0B\Sigma_m$ is finite and flat over E_0 (true for Morava E-theory).

I is the "transfer ideal":

$$I = \sum_{0 < i < m} \text{Image} \left[E^0 B(\Sigma_i \times \Sigma_{m-i}) \xrightarrow{\text{transfer}} E^0 B \Sigma_m \right].$$

Proposition

 $\tau P^m \colon E^0 X \to E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$ is a ring homomorphism.

 $E = E_{G_0/k}$. Power map:

$$E^0X \xrightarrow{P^m} E^0(X) \otimes_{E_0} E^0(B\Sigma_m)$$

Künneth isomorphism, if $E^0B\Sigma_m$ is finite and flat over E_0 (true for Morava E-theory).

l is the "transfer ideal"

$$I = \sum_{0 < i < m} \text{Image} \left[E^0 B(\Sigma_i \times \Sigma_{m-i}) \xrightarrow{\text{transfer}} E^0 B \Sigma_m \right].$$

Proposition

 $\tau P^m \colon E^0 X \to E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$ is a ring homomorphism.

 $E = E_{G_0/k}$. Power map:

$$E^0X \xrightarrow{P^m} E^0(X) \otimes_{E_0} E^0(B\Sigma_m) \xrightarrow{\tau} E^0X \otimes_{E_0} E^0B\Sigma_m/I$$

Künneth isomorphism, if $E^0B\Sigma_m$ is finite and flat over E_0 (true for Morava E-theory).

I is the "transfer ideal":

$$I = \sum_{0 < i < m} \operatorname{Image} \left[E^0 B(\Sigma_i \times \Sigma_{m-i}) \xrightarrow{\operatorname{transfer}} E^0 B \Sigma_m \right].$$

Proposition

 $\tau P^m \colon E^0 X \to E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$ is a ring homomorphism.

 $E = E_{G_0/k}$. Power map:

$$E^0X \xrightarrow{P^m} E^0(X) \otimes_{E_0} E^0(B\Sigma_m) \xrightarrow{\tau} E^0X \otimes_{E_0} E^0B\Sigma_m/I$$

Künneth isomorphism, if $E^0B\Sigma_m$ is finite and flat over E_0 (true for Morava E-theory).

I is the "transfer ideal":

$$I = \sum_{0 < i < m} \operatorname{Image} \left[E^0 B(\Sigma_i \times \Sigma_{m-i}) \xrightarrow{\operatorname{transfer}} E^0 B \Sigma_m \right].$$

Proposition

 $\tau P^m \colon E^0 X \to E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$ is a ring homomorphism.

 $E = E_{G_0/k}$. Power map:

$$E^0X \xrightarrow{P^m} E^0(X) \otimes_{E_0} E^0(B\Sigma_m) \xrightarrow{\tau} E^0X \otimes_{E_0} E^0B\Sigma_m/I$$

Künneth isomorphism, if $E^0B\Sigma_m$ is finite and flat over E_0 (true for Morava E-theory).

I is the "transfer ideal":

$$I = \sum_{0 < i < m} \operatorname{Image} \left[E^0 B(\Sigma_i \times \Sigma_{m-i}) \xrightarrow{\operatorname{transfer}} E^0 B \Sigma_m \right].$$

Proposition

 $\tau P^m \colon E^0 X \to E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$ is a ring homomorphism.

Let
$$(F_m)^0(X) = E^0X \otimes_{E^0} E^0B\Sigma_m/I$$
.

Ring homomorphisms:

- $s^*: E_0 \to (F_m)_0$, induced by $B\Sigma_m \to *$.
- $t^* \colon E_0 \to (F_m)_0$, defined by $\tau P^m \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_m)/I$.

The ring operation

$$E^0(X) \xrightarrow{\tau P^m} (F_m)^0(X)$$

produces a homomorphism of formal groups defined over $(F_m)_0$

Let
$$(F_m)^0(X) = E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$$
.

Ring homomorphisms:

- $s^*: E_0 \to (F_m)_0$, induced by $B\Sigma_m \to *$.
- $t^* \colon E_0 \to (F_m)_0$, defined by $\tau P^m \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_m)/I$.

The ring operation

$$E^0(X) \xrightarrow{\tau_{P^m}} (F_m)^0(X)$$

produces a homomorphism of formal groups defined over $(F_m)_0$

Let
$$(F_m)^0(X) = E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$$
.

Ring homomorphisms:

- $s^*: E_0 \to (F_m)_0$, induced by $B\Sigma_m \to *$.
- $t^* \colon E_0 \to (F_m)_0$, defined by $\tau P^m \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_m)/I$.

The ring operation

$$E^0(X) \xrightarrow{\tau_{P^m}} (F_m)^0(X)$$

produces a homomorphism of formal groups defined over $(F_m)_0$

Let
$$(F_m)^0(X) = E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$$
.

Ring homomorphisms:

- $s^*: E_0 \to (F_m)_0$, induced by $B\Sigma_m \to *$.
- $t^* \colon E_0 \to (F_m)_0$, defined by $\tau P^m \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_m)/I$.

The ring operation

$$E^0(X) \xrightarrow{\tau P^m} (F_m)^0(X)$$

produces a homomorphism of formal groups defined over $(F_m)_0$

Let
$$(F_m)^0(X) = E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$$
.

Ring homomorphisms:

- $s^*: E_0 \to (F_m)_0$, induced by $B\Sigma_m \to *$.
- $t^* \colon E_0 \to (F_m)_0$, defined by $\tau P^m \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_m)/I$.

The ring operation

$$E^{0}(X) \xrightarrow{\tau_{P^{m}}} (F_{m})^{0}(X) \Longrightarrow t^{*}G_{E} \xleftarrow{(\tau_{P^{m}})^{*}} s^{*}G_{E}$$

produces a homomorphism of formal groups defined over $(F_m)_0$.

Let
$$(F_m)^0(X) = E^0 X \otimes_{E^0} E^0 B \Sigma_m / I$$
.

Ring homomorphisms:

- $s^*: E_0 \to (F_m)_0$, induced by $B\Sigma_m \to *$.
- $t^* \colon E_0 \to (F_m)_0$, defined by $\tau P^m \colon E^0(*) \to E^0(*) \otimes_{E_0} E^0(B\Sigma_m)/I$.

The ring operation

$$E^{0}(X) \xrightarrow{\tau_{P^{m}}} (F_{m})^{0}(X) \implies t^{*}G_{E} \stackrel{(\tau_{P^{m}})^{*}}{\longleftarrow} s^{*}G_{E}$$

produces a homomorphism of formal groups defined over $(F_m)_0$.

Let $m = p^r$, r > 0. Let $j: * \rightarrow B\Sigma_m$.

$$E^{0}X \xrightarrow{P^{p^{r}}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{p^{r}}) \xrightarrow{\tau} E^{0}X \otimes_{E_{0}} E^{0}B\Sigma_{p^{r}}/I$$

$$\downarrow^{\operatorname{id}\otimes j^{*}}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*)$$

Using the "double coset formula", have

$$E^0B\Sigma_{p^r}/(I+\operatorname{Ker}(j^*))pprox E_0/p.$$

Thus

$$\pi \tau P^{p^r}(x) = x^{p^r} \qquad \text{(in } E^0 X/(p)\text{)}.$$

Conclusion

 $(\tau P^{p^r})^* \colon s^* G_E \to t^* G_E$ is a deformation of Frobenius.

Let $m = p^r$, r > 0. Let $j: * \rightarrow B\Sigma_m$.

$$E^{0}X \xrightarrow{P^{p^{r}}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{p^{r}}) \xrightarrow{\tau} E^{0}X \otimes_{E_{0}} E^{0}B\Sigma_{p^{r}}/I$$

$$\downarrow^{\operatorname{id}\otimes j^{*}}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*)$$

Using the "double coset formula", have

$$E^0B\Sigma_{p^r}/(I+\operatorname{Ker}(j^*))\approx E_0/p.$$

Thus

$$\pi \tau P^{p^r}(x) = x^{p^r} \qquad \text{(in } E^0 X/(p)).$$

Conclusion

 $(\tau P^{p^r})^* \colon s^* G_E \to t^* G_E$ is a deformation of Frobenius

Let $m = p^r$, r > 0. Let $j: * \rightarrow B\Sigma_m$.

$$E^{0}X \xrightarrow{P^{p^{r}}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{p^{r}}) \xrightarrow{\tau} E^{0}X \otimes_{E_{0}} E^{0}B\Sigma_{p^{r}}/I$$

$$\downarrow^{\operatorname{id}\otimes j^{*}} \qquad \qquad \downarrow^{\pi}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*) \xrightarrow{} E^{0}X \otimes_{E_{0}} E_{0}/p$$

Using the "double coset formula", have

$$E^0B\Sigma_{p^r}/(I+\operatorname{Ker}(j^*))\approx E_0/p.$$

Thus

$$\pi \tau P^{p^r}(x) = x^{p^r}$$
 (in $E^0 X/(p)$).

Conclusion

 $(\tau P^{p^r})^* \colon s^* G_E \to t^* G_E$ is a deformation of Frobenius

Let $m = p^r$, r > 0. Let $j: * \rightarrow B\Sigma_m$.

$$E^{0}X \xrightarrow{P^{p'}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{p'}) \xrightarrow{\tau} E^{0}X \otimes_{E_{0}} E^{0}B\Sigma_{p'}/I$$

$$\downarrow^{\operatorname{id}\otimes j^{*}} \qquad \qquad \downarrow^{\pi}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*) \xrightarrow{} E^{0}X \otimes_{E_{0}} E_{0}/p$$

Using the "double coset formula", have

$$E^0B\Sigma_{p^r}/(I+\operatorname{Ker}(j^*))\approx E_0/p.$$

Thus

$$\pi \tau P^{p^r}(x) = x^{p^r} \qquad \text{(in } E^0 X/(p)\text{)}.$$

Conclusion

 $(\tau P^{p^r})^*$: $s^*G_E \to t^*G_E$ is a deformation of Frobenius.

Topic 1: Strickland's Theorem

Theorem (Strickland (1998))

The homomorphism $(\tau P_{p^r})^*$: $s^*G_E \to t^*G_E$ over $(F_{p^r})_0$ is the universal example of a deformation of Frob^r between deformations of G_0 .

Remember: deformations of Frobenius correspond to finite subgroups of the domain.

Strickland actually proved the following statement:

Theorem (Strickland (1998))

The data $(s^*G_E, \operatorname{Ker}(\tau P_{p^r})^*)$ over $(F_{p^r})_0$ is the universal example of a pair (G, H) consisting of a deformation G of G_0 and a finite subgroup scheme $H \subset G$ of rank $m = p^r$.

Topic 1: Strickland's Theorem

Theorem (Strickland (1998))

The homomorphism $(\tau P_{p^r})^*$: $s^*G_E \to t^*G_E$ over $(F_{p^r})_0$ is the universal example of a deformation of Frob^r between deformations of G_0 .

Remember: deformations of Frobenius correspond to finite subgroups of the domain.

Strickland actually proved the following statement:

Theorem (Strickland (1998))

The data $(s^*G_E, \operatorname{Ker}(\tau P_{p^r})^*)$ over $(F_{p^r})_0$ is the universal example of a pair (G, H) consisting of a deformation G of G_0 and a finite subgroup scheme $H \subset G$ of rank $m = p^r$.

Topic 1: Strickland's Theorem

Theorem (Strickland (1998))

The homomorphism $(\tau P_{p^r})^* : s^* G_E \to t^* G_E$ over $(F_{p^r})_0$ is the universal example of a deformation of Frob^r between deformations of G_0 .

Remember: deformations of Frobenius correspond to finite subgroups of the domain.

Strickland actually proved the following statement:

Theorem (Strickland (1998))

The data $(s^*G_E, \operatorname{Ker}(\tau P_{p^r})^*)$ over $(F_{p^r})_0$ is the universal example of a pair (G, H) consisting of a deformation G of G_0 and a finite subgroup scheme $H \subset G$ of rank $m = p^r$.

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f: R \to R' \implies f^*: \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathrm{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let $\Gamma = \text{ring of additive power operations for } E$. That is, $\Gamma \subset \bigoplus_{\alpha \in P} F_{\alpha} \cap F_{\alpha}$

Theorem

Equivalence $\mathrm{Mod}_{\mathcal{D}} \approx \mathrm{Mod}_{\Gamma}$ of symmetric monoidal categories.

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f \colon R \to R' \implies f^* \colon \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathrm{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let $\Gamma = \text{ring of additive power operations for } E$.

That is, $\Gamma \subset \bigoplus_{m \geq 0} E_0^{\wedge} B \Sigma_m$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\mathrm{Mod}_{\mathcal{D}} \approx \mathrm{Mod}_{\Gamma}$ of symmetric monoidal categories

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f \colon R \to R' \implies f^* \colon \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathrm{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let $\Gamma = \text{ring of additive power operations}$ for E. That is, $\Gamma \subset \bigoplus_{m \geq 0} E_0^{\wedge} B \Sigma_m$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\mathrm{Mod}_{\mathcal{D}} \approx \mathrm{Mod}_{\Gamma}$ of symmetric monoidal categories

21 / 44

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f \colon R \to R' \implies f^* \colon \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathsf{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let $\Gamma=$ ring of additive power operations for E. That is, $\Gamma\subset\bigoplus_{m>0}E_0^\wedge B\Sigma_m$ consisting of α such that Q_α is additive.

Theorem

Equivalence $\mathrm{Mod}_{\mathcal{D}} \approx \mathrm{Mod}_{\Gamma}$ of symmetric monoidal categories.

21 / 44

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f: R \to R' \implies f^*: \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathsf{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let Γ = ring of additive power operations for E.

That is, $\Gamma\subset igoplus_{m>0} E_0^\wedge B\Sigma_m$ consisting of lpha such that Q_lpha is additive.

Theorem

Equivalence $\mathrm{Mod}_{\mathcal{D}} \approx \mathrm{Mod}_{\Gamma}$ of symmetric monoidal categories

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f: R \to R' \implies f^*: \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathrm{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let Γ = ring of additive power operations for E.

That is, $\Gamma \subset \bigoplus_{m>0} E_0^{\wedge} B\Sigma_m$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\mathrm{Mod}_\mathcal{D} \approx \mathrm{Mod}_\Gamma$ of symmetric monoidal categories

$$\mathcal{D}(R) = \begin{cases} \text{Objects: deformations } (G, i, \phi) \text{ of } G_0/k \text{ to } R, \\ \text{Morphisms: deformations of Frobenius.} \end{cases}$$

$$f: R \to R' \implies f^*: \mathcal{D}(R) \to \mathcal{D}(R').$$

Definition

A sheaf of modules M on $\mathcal{D} = \{\mathcal{D}(R)\}$ consists of

- functors $M_R \colon \mathcal{D}(R)^{\mathrm{op}} \to \mathrm{Mod}_R$,
- natural isomorphisms $M_f: R' \otimes_R M_R \xrightarrow{\sim} M_{R'} \circ f^*$,

satisfying obvious "coherence" axioms.

 \Longrightarrow symmetric monoidal category $\mathrm{Mod}_{\mathcal{D}}$ of sheaves of modules.

Let Γ = ring of additive power operations for E.

That is, $\Gamma \subset \bigoplus_{m>0} E_0^{\wedge} B\Sigma_m$ consisting of α such that Q_{α} is additive.

Theorem

Equivalence $\mathrm{Mod}_{\mathcal{D}} \approx \mathrm{Mod}_{\Gamma}$ of symmetric monoidal categories.

Example 3, revisited: Definition of Q_i

• C_0/\mathbb{F}_2 = elliptic curve in \mathbb{P}^2 defined by $Y^2Z + YZ^2 = X^3$. $\Longrightarrow E = E_{\widehat{C_0}/\mathbb{F}_0}$.

Proposition

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

Write

$$E^0X \xrightarrow{\tau P^2} (E^0X)[d]/(d^3-ad-2)$$

25

$$x \mapsto \tau P^2(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2.$$

• τP^2 is a ring homomorphism \Longrightarrow Cartan formulas.

Example 3, revisited: Definition of Q_i

• $C_0/\mathbb{F}_2 = \text{elliptic curve in } \mathbb{P}^2 \text{ defined by } Y^2Z + YZ^2 = X^3.$ $\Longrightarrow E = E_{\widehat{G_0}/\mathbb{F}_2}.$

Proposition

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

Write

$$E^0X \xrightarrow{\tau P^2} (E^0X)[d]/(d^3-ad-2)$$

as

$$x \mapsto \tau P^2(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2.$$

• τP^2 is a ring homomorphism \Longrightarrow Cartan formulas.

Example 3, revisited: Definition of Q_i

• C_0/\mathbb{F}_2 = elliptic curve in \mathbb{P}^2 defined by $Y^2Z + YZ^2 = X^3$. $\Longrightarrow E = E_{\widehat{C_0}/\mathbb{F}_2}$.

Proposition

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

Write

$$E^0X \xrightarrow{\tau P^2} (E^0X)[d]/(d^3-ad-2)$$

25

$$x \mapsto \tau P^2(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2.$$

• τP^2 is a ring homomorphism \Longrightarrow Cartan formulas.

Example 3, revisited: Definition of Q_i

• $C_0/\mathbb{F}_2=$ elliptic curve in \mathbb{P}^2 defined by $Y^2Z+YZ^2=X^3$. $\Longrightarrow E=E_{\widehat{C_0}/\mathbb{F}_2}$.

Proposition

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

Write

$$E^0X \xrightarrow{\tau P^2} (E^0X)[d]/(d^3-ad-2)$$

20

$$x \mapsto \tau P^2(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2.$$

• τP^2 is a ring homomorphism \Longrightarrow Cartan formulas.

Example 3, revisited: Definition of Q_i

• $C_0/\mathbb{F}_2 = \text{elliptic curve in } \mathbb{P}^2 \text{ defined by } Y^2Z + YZ^2 = X^3.$ $\Longrightarrow E = E_{\widehat{C_0}/\mathbb{F}_2}.$

Proposition

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

Write

$$E^0X \xrightarrow{\tau P^2} (E^0X)[d]/(d^3-ad-2)$$

as

$$x \mapsto \tau P^2(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2.$$

• τP^2 is a ring homomorphism \Longrightarrow Cartan formulas.

Example 3, revisited: Definition of Q_i

• C_0/\mathbb{F}_2 = elliptic curve in \mathbb{P}^2 defined by $Y^2Z + YZ^2 = X^3$. $\Longrightarrow E = E_{\widehat{C_0}/\mathbb{F}_2}$.

Proposition

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

Write

$$E^0X \xrightarrow{\tau P^2} (E^0X)[d]/(d^3-ad-2)$$

as

$$x \mapsto \tau P^2(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2.$$

• τP^2 is a ring homomorphism \Longrightarrow Cartan formulas.

• Universal deformation of C_0/\mathbb{F}_2 : $C/E_0 = \text{elliptic curve defined over } E_0 = \mathbb{Z}_2[\![a]\!], \text{ by}$

$$Y^2Z + aXYZ + YZ^2 = X^3.$$

• Affine chart: u = X/Y, v = Z/Y.

$$v + a uv + v^2 = u^3.$$

- Subgroup schemes of rank 2: "generated" by points P of C of form $(u(P), v(P)) = (d, -d^3)$ such that $d^3 ad 2 = 0$.
- These are also finite subgroups of the formal completion \widehat{C} , so

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2 [a]) [d] / (d^3 - ad - 2).$$

• Universal deformation of C_0/\mathbb{F}_2 : $C/E_0 = \text{elliptic curve defined over } E_0 = \mathbb{Z}_2[\![a]\!], \text{ by}$

$$Y^2Z + aXYZ + YZ^2 = X^3.$$

• Affine chart: u = X/Y, v = Z/Y.

$$v + a uv + v^2 = u^3.$$

- Subgroup schemes of rank 2: "generated" by points P of C of form $(u(P), v(P)) = (d, -d^3)$ such that $d^3 ad 2 = 0$.
- These are also finite subgroups of the formal completion \widehat{C} , so

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

• Universal deformation of C_0/\mathbb{F}_2 : $C/E_0 = \text{elliptic curve defined over } E_0 = \mathbb{Z}_2[a], \text{ by}$

$$Y^2Z + aXYZ + YZ^2 = X^3.$$

• Affine chart: u = X/Y, v = Z/Y.

$$v + a uv + v^2 = u^3.$$

- Subgroup schemes of rank 2: "generated" by points P of C of form $(u(P), v(P)) = (d, -d^3)$ such that $d^3 ad 2 = 0$.
- These are also finite subgroups of the formal completion \widehat{C} , so

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

• Universal deformation of C_0/\mathbb{F}_2 : $C/E_0 = \text{elliptic curve defined over } E_0 = \mathbb{Z}_2[a], \text{ by}$

$$Y^2Z + aXYZ + YZ^2 = X^3.$$

• Affine chart: u = X/Y, v = Z/Y.

$$v + a uv + v^2 = u^3.$$

- Subgroup schemes of rank 2: "generated" by points P of C of form $(u(P), v(P)) = (d, -d^3)$ such that $d^3 ad 2 = 0$.
- ullet These are also finite subgroups of the formal completion $\widehat{\mathcal{C}}$, so

$$(F_2)_0 = E^0 B \Sigma_2 / I \approx (\mathbb{Z}_2[a])[d] / (d^3 - ad - 2).$$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \implies isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a uv + v^2 = u^3\} \rightarrow \{v' + (a^2 + 3d - ad^2) u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \implies isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a\,uv + v^2 = u^3\} \rightarrow \{v' + \left(a^2 + 3d - ad^2\right)u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$.
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2,$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \Longrightarrow isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a uv + v^2 = u^3\} \rightarrow \{v' + (a^2 + 3d - ad^2) u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P),$$
 $v'(Q') = v(Q)v(Q+P).$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \Longrightarrow isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a uv + v^2 = u^3\} \rightarrow \{v' + (a^2 + 3d - ad^2) u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2,$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \implies isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a uv + v^2 = u^3\} \rightarrow \{v' + (a^2 + 3d - ad^2) u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$.
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \Longrightarrow isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a\,uv + v^2 = u^3\} \rightarrow \{v' + \left(a^2 + 3d - ad^2\right)u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$.
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2,$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \Longrightarrow isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a uv + v^2 = u^3\} \rightarrow \{v' + (a^2 + 3d - ad^2) u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$.
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = \frac{a^2 + 3d - ad^2}{2}$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

• Given $P \in C$ with $(u(P), v(P)) = (d, -d^3)$, $d^3 - ad - 2 = 0$ \implies isogeny $\psi_P \colon C \to C'$ such that $\operatorname{Ker}(\psi_P) = \langle P \rangle$.

$$\{v + a\,uv + v^2 = u^3\} \rightarrow \{v' + \left(a^2 + 3d - ad^2\right)u'v' + v'^2 = u'^3\}$$

• Definition of ψ_P : if $Q' = \psi_P(Q)$, then

$$u'(Q') = -u(Q)u(Q+P), \qquad v'(Q') = v(Q)v(Q+P).$$

- By construction, ψ_P is a deformation of Frobenius: if d=0, then $u'(Q')=u(Q)^2$ and $v'(Q')=v(Q)^2$.
- \Longrightarrow computation of $t^*: E_0 \to (F_2)_0$:

$$t^*(a) = \tau P^2(a) = a^2 + 3d - ad^2,$$

$$Q_0(ax) + Q_1(ax) d + Q_2(ax) d^2$$

= $(a^2 + 3d - ad^2) (Q_0(x) + Q_1(x) d + Q_2(x) d^2).$

In Example 3, we have

Proposition

$$Q_0(x) \equiv x^2 \mod 2$$
.

Remember

$$E^{0}X \xrightarrow{P^{p^{r}}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{p^{r}}) \xrightarrow{\tau} E^{0}X \otimes_{E_{0}} E^{0}B\Sigma_{p^{r}}/I$$

$$\downarrow_{\mathrm{id}\otimes j^{*}} \qquad \qquad \downarrow_{\pi}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*) \xrightarrow{} E^{0}X \otimes_{E_{0}} E_{0}/p$$

Formula

$$(\tau P^2)(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2,$$

pass to $E_0/2$:

$$x^2 \equiv Q_0(x) \mod 2$$

In Example 3, we have

Proposition

$$Q_0(x) \equiv x^2 \mod 2$$
.

Remember:

$$E^{0}X \xrightarrow{p_{p'}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{p'}) \xrightarrow{\tau} E^{0}X \otimes_{E_{0}} E^{0}B\Sigma_{p'}/I$$

$$\downarrow_{id \otimes j^{*}} \qquad \qquad \downarrow_{\pi}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*) \xrightarrow{} E^{0}X \otimes_{E_{0}} E_{0}/p$$

Formula:

$$(\tau P^2)(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2$$

pass to $E_0/2$

$$x^2 \equiv Q_0(x) \mod 2$$

In Example 3, we have

Proposition

$$Q_0(x) \equiv x^2 \mod 2.$$

In the example:

$$E^{0}X \xrightarrow{P^{2}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{2}) \xrightarrow{\tau} (E^{0}X)[d]/(d^{3} - ad - 2)$$

$$\downarrow_{id \otimes j^{*}} \qquad \qquad \downarrow_{d \mapsto 0}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*) \xrightarrow{} E_{0}X/(2)$$

Formula:

$$(\tau P^2)(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2,$$

pass to $E_0/2$

$$x^2 \equiv Q_0(x) \mod 2$$

In Example 3, we have

Proposition

$$Q_0(x) \equiv x^2 \mod 2$$
.

In the example:

$$E^{0}X \xrightarrow{P^{2}} E^{0}X \otimes_{E_{0}} E^{0}(B\Sigma_{2}) \xrightarrow{\tau} (E^{0}X)[d]/(d^{3} - ad - 2)$$

$$\downarrow^{\operatorname{id}\otimes j^{*}} \qquad \qquad \downarrow^{d \mapsto 0}$$

$$E^{0}X \otimes_{E_{0}} E^{0}(*) \xrightarrow{} E_{0}X/(2)$$

Formula:

$$(\tau P^2)(x) = Q_0(x) + Q_1(x) d + Q_2(x) d^2,$$

pass to $E_0/2$:

$$x^2 \equiv Q_0(x) \mod 2$$
.

Topic 2: Frobenius is a deformation of Frobenius

 $(G, i, \psi) = \text{deformation of } G_0/k \text{ to } R.$

When $R \supset \mathbb{F}_p$, there is a relative Frobenius homomorphism

Frob:
$$G \to \phi^* G$$

$$(G, i, \psi) \rightarrow (\phi^* G, i\phi, \phi^*(\psi)) \text{ in } \mathcal{D}(R).$$

Observation

Universal example of Frob: $G \rightarrow \phi^*G$ is determined by

$$\pi \colon E^0 B\Sigma_p / I \to E_0 / p$$

Topic 2: Frobenius is a deformation of Frobenius

 $(G, i, \psi) = \text{deformation of } G_0/k \text{ to } R.$

When $R \supset \mathbb{F}_p$, there is a relative Frobenius homomorphism

Frob:
$$G \to \phi^* G$$

$$(G, i, \psi) \rightarrow (\phi^*G, i\phi, \phi^*(\psi)) \text{ in } \mathcal{D}(R).$$

Observation

Universal example of Frob: $G \to \phi^*G$ is determined by

$$\pi \colon E^0 B\Sigma_p/I \to E_0/p.$$

Topic 2: Frobenius congruence for sheaves

Definition

A sheaf of commutative rings B on \mathcal{D} is a **Frobenius sheaf** if for every $R \supset \mathbb{F}_p$ and $G \in \mathcal{D}(R)$,

$$B_R(G) \xrightarrow{B_R(\operatorname{Frob})} B_R(\phi^*G) \approx R^{\phi} \otimes_R B_R(G)$$

is the relative Frobenius homomorphism of R-algebras.

Theorem (R.)

There is a functor

$$\{amplified \ \Gamma\text{-rings}\} o \{Frobenius \ sheaves \ on \ \mathcal{D}\}$$

which restricts to an equivalence between the full subcategories of p-torsion free objects.

Topic 2: Frobenius congruence for sheaves

Definition

A sheaf of commutative rings B on \mathcal{D} is a **Frobenius sheaf** if for every $R\supset \mathbb{F}_n$ and $G\in \mathcal{D}(R)$,

$$B_R(G) \xrightarrow{B_R(\operatorname{Frob})} B_R(\phi^*G) \approx R^{\phi} \otimes_R B_R(G)$$

is the relative Frobenius homomorphism of R-algebras.

Theorem (R.)

There is a functor

$$\{amplified \ \Gamma\text{-rings}\} \rightarrow \{Frobenius \ sheaves \ on \ \mathcal{D}\}$$

which restricts to an equivalence between the full subcategories of p-torsion free objects.

Topic 3: Koszul algebras

 $A = \bigoplus_{r>0} A_r$ graded associative ring, $A_0 = R$ commutative.

Definition

A is **Koszul** if there exist R-modules C_r with $C_0 = R$, and an exact sequence (a "Koszul complex")

$$\cdots \xrightarrow{d} A \otimes_R C_3 \xrightarrow{d} A \otimes_R C_2 \xrightarrow{d} A \otimes_R C_1 \xrightarrow{d} A \otimes_R C_0 \xrightarrow{d} R \to 0$$

of left A-modules such that d raises degree by 1.

Fact

If A is Koszul, then

$$A \approx T_R(A_1)/(U), \qquad U \subset A_2$$

(i.e., A is "quadratic".)

Topic 3: Koszul algebras

 $A = \bigoplus_{r>0} A_r$ graded associative ring, $A_0 = R$ commutative.

Definition

A is **Koszul** if there exist R-modules C_r with $C_0 = R$, and an exact sequence (a "Koszul complex")

$$\cdots \xrightarrow{d} A \otimes_R C_3 \xrightarrow{d} A \otimes_R C_2 \xrightarrow{d} A \otimes_R C_1 \xrightarrow{d} A \otimes_R C_0 \xrightarrow{d} R \to 0$$

of left A-modules such that d raises degree by 1.

Fact

If A is Koszul, then

$$A \approx T_R(A_1)/(U), \qquad U \subset A_2$$

(i.e., A is "quadratic".)

Topic 3: Koszul algebras (Example 3)

- Back to the example: $\Gamma \approx \bigoplus \Gamma_r \approx T_{E_0}(\Gamma_1)/(U)$, where $\Gamma_1 = E_0\{Q_0, Q_1, Q_2\}$, U = Adem relations.
- **PBW Theorem** (Priddy (1970)): if Γ has a "nice" admissible basis, then Γ is Koszul.
- ⇒ Exact sequence.

$$0 \to \Gamma \otimes_{E_0} C_2 \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0$$

 C_i are free modules over E_0 : rank $C_1 = 3$, rank $C_2 = 2$

Topic 3: Koszul algebras (Example 3)

- Back to the example: $\Gamma \approx \bigoplus \Gamma_r \approx T_{E_0}(\Gamma_1)/(U)$, where $\Gamma_1 = E_0\{Q_0, Q_1, Q_2\}$, U = Adem relations.
- **PBW Theorem** (Priddy (1970)): if Γ has a "nice" admissible basis, then Γ is Koszul.
- ⇒ Exact sequence.

$$0 \to \Gamma \otimes_{E_0} C_2 \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0$$

 C_i are free modules over E_0 : rank $C_1 = 3$, rank $C_2 = 2$

Topic 3: Koszul algebras (Example 3)

- Back to the example: $\Gamma \approx \bigoplus \Gamma_r \approx T_{E_0}(\Gamma_1)/(U)$, where $\Gamma_1 = E_0\{Q_0, Q_1, Q_2\}$, U = Adem relations.
- **PBW Theorem** (Priddy (1970)): if Γ has a "nice" admissible basis, then Γ is Koszul.
- $\bullet \implies \mathsf{Exact}$ sequence.

$$0 \to \Gamma \otimes_{E_0} C_2 \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0.$$

 C_i are free modules over E_0 : rank $C_1 = 3$, rank $C_2 = 2$.

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Topic 3: Is Γ always Koszul?

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Topic 3: Is Γ always Koszul?

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Conjecture (Ando-Hopkins-Strickland (mid 90s?))

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Topic 3: Is Γ always Koszul?

Theorem (Ando-Hopkins-Strickland(?), R.)

For all $E = E_{G_0/k}$, the associated ring Γ of power operations is Koszul. The associated Koszul complex has the form

$$0 \to \Gamma \otimes_{E_0} C_n \to \cdots \to \Gamma \otimes_{E_0} C_1 \to \Gamma \to E_0 \to 0,$$

- They developed a program to prove the result, using interesting ideas about a kind of "Bruhat-Tits building" formed using flags of certain finite subgroup schemes of G_E .
- I don't believe they ever completed their program; there is probably no obstruction to doing so, however.
- There is another proof, which avoids using formal group theory; it uses ideas related to the Whitehead conjecture (Kuhn, Mitchell, Priddy) and calculus (Arone-Mahowald, Arone-Dwyer).

Topic 3: Linearization

Here are some of the ideas in the proof.

Definition

Given a (nonadditive) functor $F \colon \mathrm{Mod}_{E_0} \to \mathrm{Mod}_{E_0}$, the **linearization** $\mathcal{L}[F] \colon \mathrm{Mod}_{E_0} \to \mathrm{Mod}_{E_0}$ is

$$\mathcal{L}[F](M) = \operatorname{Cok}\left[F(M \oplus M) \xrightarrow{F(\pi_1 + \pi_2)} F(M) \right].$$

 $\mathcal{L}[F]$ is initial additive quotient functor of F.

In some cases, including ours, $\mathcal{L}[F \circ G] \to \mathcal{L}[F] \circ \mathcal{L}[G]$ is an isomorphism.

Topic 3: Linearization of the amplified Γ-ring monad

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

 $\mathcal{L}[F](E_0) = \Delta$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

• Monadic bar construction $\mathcal{B}_{\bullet}(F, F, F)$.

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

$$\mathcal{L}[F](E_0) = \Delta.$$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

•

$$\mathcal{L}[F](E_0) = \Delta.$$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

$$\mathcal{L}[F](E_0) = \Delta.$$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

$$\mathcal{L}[F](E_0) = \Delta.$$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

$$\mathcal{L}[F](E_0) = \Delta.$$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

- $F : \operatorname{Mod}_{E_0} \to \operatorname{Mod}_{E_0}$ the free amplified Γ -ring functor.
- For *E*-module *M* with π_*M = free E_* -module concentrated in even degree,

$$F(\pi_0 M) \approx \bigoplus_{m \geq 0} \pi_0 L_{K(n)} \mathbb{P}_E^m(M).$$

$$\mathcal{L}[F](E_0) = \Delta.$$

$$\mathcal{L}[F \circ \cdots \circ F](E_0) = \Delta \otimes_{E_0} \cdots \otimes_{E_0} \Delta.$$

 Δ is a ring, non-canonically isomorphic to Γ .

$$\mathcal{L}\left[\mathcal{B}_{\bullet}(F,F,F)\right] \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta).$$

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M, \Delta, N)$ according to grading on Δ .
- Δ is **Koszul** if $\operatorname{gr}_q \mathcal{B}_{\bullet}(E_0, \Delta, E_0)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on $\mathcal{B}_{\bullet}(M,\Delta,N)$; $E_1^{p,q}=$ chain complex.

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M,\Delta,N)$ according to grading on Δ .
- Δ is **Koszul** if $\operatorname{gr}_q \mathcal{B}_{\bullet}(E_0, \Delta, E_0)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on $\mathcal{B}_{\bullet}(M,\Delta,N)$; $E_1^{p,q}=$ chain complex.

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M,\Delta,N)$ according to grading on Δ .
- Δ is **Koszul** if $\operatorname{gr}_q \mathcal{B}_{\bullet}(E_0, \Delta, E_0)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on $\mathcal{B}_{\bullet}(M, \Delta, N)$; $\mathcal{E}_{1}^{p,q} = \text{chain complex}$.

Charles Rezk (UIUC) Power operations May 2, 2009 33 / 44

(Priddy 1970):

- If Δ is a graded ring, filter $\mathcal{B}_{\bullet}(M, \Delta, N)$ according to grading on Δ .
- Δ is **Koszul** if $\operatorname{gr}_q \mathcal{B}_{\bullet}(E_0, \Delta, E_0)$ has homology concentrated in degree q.
- Koszul complex "is" the spectral sequence associated to this filtration on $\mathcal{B}_{\bullet}(M,\Delta,N)$; $E_1^{p,q}=$ chain complex.

Charles Rezk (UIUC) Power operations May 2, 2009 33 / 44

Topic 3: Partition poset

$$\mathcal{B}_q(F,F,F)(E_0) pprox (F \circ \cdots \circ F)(E_0) pprox \bigoplus_{m \geq 0} E_0^{\wedge}(K_q(m)_{h\Sigma_m}).$$

 $K_{\bullet}(m)$ is the partition complex:

$$K_{\bullet}(m) = \text{nerve } \{ \text{poset of partitions of } \{1, \dots, m \} \}.$$

$$\mathcal{B}_q(\Delta, \Delta, \Delta) \approx \mathcal{L}[\mathcal{B}_q(F, F, F)](E_0) \approx \bigoplus_{m \geq 0} Q_m(K_q(m))$$

where

$$Q_m(X) = \operatorname{Cok} \left[\bigoplus_{0 < i < m} E_0^{\wedge}(X_{h(\Sigma_i \times \Sigma_{m-i})}) \to E_0^{\wedge}(X_{h\Sigma_m}) \right].$$

X is a set with Σ_m action.

Topic 3: Partition poset

$$\mathcal{B}_q(F,F,F)(E_0) pprox (F \circ \cdots \circ F)(E_0) pprox \bigoplus_{m \geq 0} E_0^{\wedge}(K_q(m)_{h\Sigma_m}).$$

 $K_{\bullet}(m)$ is the **partition complex**:

$$K_{\bullet}(m) = \text{nerve } \{ \text{poset of partitions of } \{1, \dots, m \} \}.$$

$$\mathcal{B}_q(\Delta, \Delta, \Delta) \approx \mathcal{L}[\mathcal{B}_q(F, F, F)](E_0) \approx \bigoplus_{m>0} Q_m(K_q(m))$$

where

•

•

$$Q_m(X) = \operatorname{Cok} \left[\bigoplus_{0 < i < m} E_0^{\wedge}(X_{h(\Sigma_i \times \Sigma_{m-i})}) \to E_0^{\wedge}(X_{h\Sigma_m}) \right],$$

X is a set with Σ_m action.

- $\bullet \ \overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim \text{, associated to } \mathcal{B}_{\bullet}(E_0,\Delta,E_0) \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta)/\sim .$
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

$$U_{\bullet}(p^r) = \bigcup_{\substack{A \subset \Sigma_{p^r} \\ \text{max. ab. subgp.}}} (K_{\bullet}(p^r) \times \Sigma_{p^r} / (\Sigma_p \wr \cdots \wr \Sigma_p))^A.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

- $\bullet \ \overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim \text{, associated to } \mathcal{B}_{\bullet}(E_0,\Delta,E_0) \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta)/\sim .$
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

$$U_{\bullet}(p^r) = \bigcup_{\substack{A \subset \Sigma_{p^r} \\ \text{max. ab. subgp.}}} (K_{\bullet}(p^r) \times \Sigma_{p^r} / (\Sigma_p \wr \cdots \wr \Sigma_p))^A.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

- $\overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim$, associated to $\mathcal{B}_{\bullet}(E_0, \Delta, E_0) \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta)/\sim$.
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

$$U_{\bullet}(p^r) = \bigcup_{\substack{A \subset \Sigma_{p^r} \\ \text{max. ab. subgp.}}} (K_{\bullet}(p^r) \times \Sigma_{p^r} / (\Sigma_p \wr \cdots \wr \Sigma_p))^A.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

- $\bullet \ \overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim \text{, associated to } \mathcal{B}_{\bullet}(E_0,\Delta,E_0) \approx \mathcal{B}_{\bullet}(\Delta,\Delta,\Delta)/\sim .$
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

$$U_{\bullet}(p^r) = \bigcup_{\substack{A \subset \Sigma_{p^r} \\ \text{max. ab. subgp.}}} (K_{\bullet}(p^r) \times \Sigma_{p^r} / (\Sigma_p \wr \cdots \wr \Sigma_p))^A.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

- $\overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim$, associated to $\mathcal{B}_{\bullet}(E_0, \Delta, E_0) \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta)/\sim$.
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$U_{\bullet}(p^r) \rightarrowtail K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

where

$$U_{ullet}(p^r) = igcup_{\substack{A \subset \Sigma_{p^r} \ ext{max. ab. subgp.}}} (\mathcal{K}_{ullet}(p^r) imes \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p))^A \,.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

- $\overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim$, associated to $\mathcal{B}_{\bullet}(E_0, \Delta, E_0) \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta)/\sim$.
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$U_{\bullet}(p^r) \rightarrowtail K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

where

$$U_{ullet}(p^r) = igcup_{\substack{A\subset \Sigma_{p^r} \ ext{max. ab. subgp.}}} (\mathcal{K}_{ullet}(p^r) imes \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p))^A \,.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

Charles Rezk (UIUC)

- $\overline{K}_{\bullet}(m) = K_{\bullet}(m)/\sim$, associated to $\mathcal{B}_{\bullet}(E_0, \Delta, E_0) \approx \mathcal{B}_{\bullet}(\Delta, \Delta, \Delta)/\sim$.
- $Q_m(\overline{K}_{\bullet}(m)) = 0$ if $m \neq p^r$.
- Need to show $Q_{p^r}(\overline{K}_{\bullet}(p^r))$ has H_* concentrated in degree r.

$$U_{\bullet}(p^r) \rightarrowtail K_{\bullet}(p^r) \times \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p) \longrightarrow K_{\bullet}(p^r),$$

where

$$U_{ullet}(p^r) = igcup_{\substack{A\subset \Sigma_{p^r} \ ext{max. ab. subgp.}}} (\mathcal{K}_{ullet}(p^r) imes \Sigma_{p^r}/(\Sigma_p \wr \cdots \wr \Sigma_p))^A \,.$$

- Reduce to showing $Q_{p^r}(\overline{U}_{\bullet}(p^r))$ is chain homotopy equivalent to a complex concentrated in degree r.
- Claim: There is a Σ_{p^r} -equivariant homotopy equivalence $\overline{U}_{\bullet}(p^r) \approx X_+ \wedge S^r$, where X is a Σ_{p^r} -set.

Charles Rezk (UIUC)

• $A \subset \Sigma_{p^r}$ maximal abelian subgroup:

$$K_{\bullet}(p^r)^A = \text{nerve} \{ \text{ poset of subgroups of } A \}.$$

For $A \approx (\mathbb{Z}/p)^r$, the quotient $\overline{K}_{\bullet}(p^r)^A$ is (a 2-fold suspension of) the Tits building for $GL(r, \mathbb{F}_p)$.

$$\overline{K}_{\bullet}(p^r)^A \approx \begin{cases} \bigvee S^r & \text{if } A \approx (\mathbb{Z}/p)^r, \\ * & \text{otherwise.} \end{cases}$$

 $A = (\mathbb{Z}/p)^r$ result is theorem of Solomon-Tits (1969).

• $A \subset \Sigma_{p^r}$ maximal abelian subgroup:

$$K_{\bullet}(p^r)^A = \text{nerve} \{ \text{ poset of subgroups of } A \}.$$

For $A \approx (\mathbb{Z}/p)^r$, the quotient $\overline{K}_{\bullet}(p^r)^A$ is (a 2-fold suspension of) the Tits building for $GL(r, \mathbb{F}_p)$.

$$\overline{K}_{\bullet}(p^r)^A \approx \begin{cases} \bigvee S^r & \text{if } A \approx (\mathbb{Z}/p)^r, \\ * & \text{otherwise.} \end{cases}$$

 $A = (\mathbb{Z}/p)^r$ result is theorem of Solomon-Tits (1969)

• $A \subset \Sigma_{p^r}$ maximal abelian subgroup:

$$K_{\bullet}(p^r)^A = \text{nerve} \{ \text{ poset of subgroups of } A \}.$$

For $A \approx (\mathbb{Z}/p)^r$, the quotient $\overline{K}_{\bullet}(p^r)^A$ is (a 2-fold suspension of) the Tits building for $GL(r, \mathbb{F}_p)$.

$$\overline{K}_{\bullet}(p^r)^A \approx \begin{cases} \bigvee S^r & \text{if } A \approx (\mathbb{Z}/p)^r, \\ * & \text{otherwise.} \end{cases}$$

 $A = (\mathbb{Z}/p)^r$ result is theorem of Solomon-Tits (1969).

• $A \subset \Sigma_{p^r}$ maximal abelian subgroup:

$$K_{\bullet}(p^r)^A = \text{nerve} \{ \text{ poset of subgroups of } A \}.$$

For $A \approx (\mathbb{Z}/p)^r$, the quotient $\overline{K}_{\bullet}(p^r)^A$ is (a 2-fold suspension of) the Tits building for $GL(r, \mathbb{F}_p)$.

$$\overline{K}_{\bullet}(p^r)^A \approx \begin{cases} \bigvee S^r & \text{if } A \approx (\mathbb{Z}/p)^r, \\ * & \text{otherwise.} \end{cases}$$

 $A = (\mathbb{Z}/p)^r$ result is theorem of Solomon-Tits (1969).

We return to the main example (height 2, prime 2).

• $\Psi \in \Gamma$ is element corresponding to the operation:

$$E^0X \xrightarrow{\tau_P^4} E^0X \otimes_{E_0} (F_4)_0 \xrightarrow{\mathrm{id} \otimes \rho} E^0X \otimes_{E_0} E_0$$

where $\rho: (F_4)_0 \to E_0$ classifies $[-2]: G_E \to G_E$ (since $[-2](x) \equiv x^4 \mod (2, a)$, it is a deformation of Frob^2 .)

•
$$\Psi = Q_0 Q_0 + a Q_0 Q_1 - 2 Q_1 Q_1 + a^2 Q_0 Q_2 - 2a Q_1 Q_2 + 4 Q_2 Q_2$$
.

• $\Psi \colon B \to B$ is a ring homomorphism.

We return to the main example (height 2, prime 2).

• $\Psi \in \Gamma$ is element corresponding to the operation:

$$E^0X \xrightarrow{\tau_{}P^4} E^0X \otimes_{E_0} (F_4)_0 \xrightarrow{\mathrm{id} \otimes \rho} E^0X \otimes_{E_0} E_0$$

where $\rho: (F_4)_0 \to E_0$ classifies $[-2]: G_E \to G_E$ (since $[-2](x) \equiv x^4 \mod (2, a)$, it is a deformation of Frob^2 .)

$$\Psi = Q_0Q_0 + aQ_0Q_1 - 2Q_1Q_1 + a^2Q_0Q_2 - 2aQ_1Q_2 + 4Q_2Q_2.$$

• $\Psi : B \to B$ is a ring homomorphism.

We return to the main example (height 2, prime 2).

• $\Psi \in \Gamma$ is element corresponding to the operation:

$$E^0X \xrightarrow{\tau_{}P^4} E^0X \otimes_{E_0} (F_4)_0 \xrightarrow{\mathrm{id} \otimes \rho} E^0X \otimes_{E_0} E_0$$

where $\rho: (F_4)_0 \to E_0$ classifies $[-2]: G_E \to G_E$ (since $[-2](x) \equiv x^4 \mod (2, a)$, it is a deformation of Frob^2 .)

- $\bullet \ \Psi = Q_0 Q_0 + a \, Q_0 Q_1 2 \, Q_1 Q_1 + a^2 \, Q_0 \, Q_2 2a \, Q_1 \, Q_2 + 4 \, Q_2 \, Q_2.$
- $\Psi : B \to B$ is a ring homomorphism.

• $N: B \rightarrow B$ corresponds to the operation:

$$E^0X \xrightarrow{\tau P^2} E^0X \otimes_{E_0} (F_2)_0 \xrightarrow{\mathsf{Norm}} E^0X.$$

(N is a "multiplicative Hecke operator".)

$$N(x) = (Q_0x)^3 + 2a(Q_0x)^2Q_2x - aQ_0x(Q_1x)^2 + a^2Q_0x(Q_2x)^2 - 6Q_0Q_1xQ_2x + 2(Q_1x)^3 - 2aQ_1x(Q_2x)^2 + 4(Q_2x)^3.$$

- N(xy) = N(x) N(y), but N is not additive.
- $N(x) \equiv x^2 \Psi(x) \mod 2$.

• $N: B \rightarrow B$ corresponds to the operation:

$$E^0X \xrightarrow{\tau P^2} E^0X \otimes_{E_0} (F_2)_0 \xrightarrow{\mathsf{Norm}} E^0X.$$

(N is a "multiplicative Hecke operator".)

 $N(x) = (Q_0x)^3 + 2a(Q_0x)^2Q_2x - aQ_0x(Q_1x)^2 + a^2Q_0x(Q_2x)^2$

$$-6 Q_0 Q_{1x} Q_{2x} + 2 (Q_{1x})^3 - 2a Q_{1x} (Q_{2x})^2 + 4 (Q_{2x})^3.$$

- N(xy) = N(x) N(y), but N is not additive.
- $N(x) \equiv x^2 \Psi(x) \mod 2$.

• $N: B \rightarrow B$ corresponds to the operation:

$$E^0X \xrightarrow{\tau P^2} E^0X \otimes_{E_0} (F_2)_0 \xrightarrow{\mathsf{Norm}} E^0X.$$

(N is a "multiplicative Hecke operator".)

•

$$N(x) = (Q_0x)^3 + 2a(Q_0x)^2Q_2x - aQ_0x(Q_1x)^2 + a^2Q_0x(Q_2x)^2 - 6Q_0Q_1xQ_2x + 2(Q_1x)^3 - 2aQ_1x(Q_2x)^2 + 4(Q_2x)^3.$$

- N(xy) = N(x) N(y), but N is not additive.
- $N(x) \equiv x^2 \Psi(x) \mod 2$.

• $N: B \rightarrow B$ corresponds to the operation:

$$E^0X \xrightarrow{\tau P^2} E^0X \otimes_{E_0} (F_2)_0 \xrightarrow{\mathsf{Norm}} E^0X.$$

(N is a "multiplicative Hecke operator".)

•

$$N(x) = (Q_0x)^3 + 2a(Q_0x)^2Q_2x - aQ_0x(Q_1x)^2 + a^2Q_0x(Q_2x)^2 - 6Q_0Q_1xQ_2x + 2(Q_1x)^3 - 2aQ_1x(Q_2x)^2 + 4(Q_2x)^3.$$

- N(xy) = N(x) N(y), but N is not additive.
- $N(x) \equiv x^2 \Psi(x) \mod 2$.

• If $x \in B^{\times}$, then $N(x) \in B^{\times}$, so $N(x) \equiv x^2 \Psi(x) \mod 2$ implies

$$\frac{x^2 \, \Psi(x)}{N(x)} \equiv 1 \mod 2.$$

• For any 2-complete amplified Γ-ring, get a homomorphism

$$\ell \colon B^{\times} \to B,$$

$$x \mapsto \frac{1}{2} \log \left[\frac{x^2 \Psi(x)}{N(x)} \right].$$

• A = a K(2)-local commutative E-algebra, there is a map of spectra

$$gl_1(A) \to A.$$

On π_0 , this map is given by ℓ

• If $x \in B^{\times}$, then $N(x) \in B^{\times}$, so $N(x) \equiv x^2 \Psi(x) \mod 2$ implies

$$\frac{x^2 \, \Psi(x)}{N(x)} \equiv 1 \mod 2.$$

ullet For any 2-complete amplified Γ -ring, get a homomorphism

$$\ell \colon B^{\times} \to B,$$

$$x \mapsto \frac{1}{2} \log \left[\frac{x^2 \Psi(x)}{N(x)} \right].$$

• A = a K(2)-local commutative E-algebra, there is a map of spectra

$$gl_1(A) \to A$$
.

On π_0 , this map is given by ℓ .

• If $x \in B^{\times}$, then $N(x) \in B^{\times}$, so $N(x) \equiv x^2 \Psi(x) \mod 2$ implies

$$\frac{x^2 \, \Psi(x)}{N(x)} \equiv 1 \mod 2.$$

For any 2-complete amplified Γ-ring, get a homomorphism

$$\ell \colon B^{\times} \to B,$$

$$x \mapsto \frac{1}{2} \log \left[\frac{x^2 \Psi(x)}{N(x)} \right].$$

• A = a K(2)-local commutative E-algebra, there is a map of spectra

$$\mathrm{gl}_1(A) \to A$$
.

On π_0 , this map is given by ℓ .

• If $x \in B^{\times}$, then $N(x) \in B^{\times}$, so $N(x) \equiv x^2 \Psi(x) \mod 2$ implies

$$\frac{x^2 \, \Psi(x)}{N(x)} \equiv 1 \mod 2.$$

For any 2-complete amplified Γ-ring, get a homomorphism

$$\ell \colon B^{\times} \to B,$$

$$x \mapsto \frac{1}{2} \log \left[\frac{x^2 \Psi(x)}{N(x)} \right].$$

• A = a K(2)-local commutative E-algebra, there is a map of spectra

$$\mathrm{gl}_1(A) \to A$$
.

On π_0 , this map is given by ℓ .

• If $x \in B^{\times}$, then $N(x) \in B^{\times}$, so $N(x) \equiv x^2 \Psi(x) \mod 2$ implies

$$\frac{x^2 \, \Psi(x)}{N(x)} \equiv 1 \mod 2.$$

For any 2-complete amplified Γ-ring, get a homomorphism

$$\ell \colon B^{\times} \to B,$$

$$x \mapsto \frac{1}{2} \log \left[\frac{x^2 \Psi(x)}{N(x)} \right].$$

• A = a K(2)-local commutative E-algebra, there is a map of spectra

$$\mathrm{gl}_1(A) \to A$$
.

39 / 44

On π_0 , this map is given by ℓ .

Topic 4: Hecke operators

Now E is a general Morava E-theory (height n, prime p).

• Elements $\tilde{T}(p^k) \in \Gamma$, given by

$$E^0X \xrightarrow{\tau P^{p^r}} E^0X \otimes_{E_0} (F_{p^r})_0 \xrightarrow{\mathsf{Trace}} E^0X.$$

(First constructed by Ando (1992).)

• $\{\tilde{T}(p^k)\}$ generate a commutaive subring $\mathbb{Z}_p[\tilde{T}_1,\ldots,\tilde{T}_n]\subset \Gamma$, where

$$\sum_{r=0}^{n} (-1)^r p^{r(r-1)/2} \tilde{\mathcal{T}}_r \cdot U^r = \left(\sum_{k \geq 0} \tilde{\mathcal{T}}(p^k) \cdot U^k\right)^{-1}$$

in $\Gamma \llbracket U \rrbracket$.

Topic 4: Hecke operators

Now E is a general Morava E-theory (height n, prime p).

• Elements $\tilde{T}(p^k) \in \Gamma$, given by

$$E^0X \xrightarrow{\tau P^{p^r}} E^0X \otimes_{E_0} (F_{p^r})_0 \xrightarrow{\mathsf{Trace}} E^0X.$$

(First constructed by Ando (1992).)

• $\{\tilde{T}(p^k)\}$ generate a commutaive subring $\mathbb{Z}_p[\tilde{T}_1,\ldots,\tilde{T}_n]\subset \Gamma$, where

$$\sum_{r=0}^n (-1)^r
ho^{r(r-1)/2} ilde{\mathcal{T}}_r \cdot U^r = \left(\sum_{k \geq 0} ilde{\mathcal{T}}(
ho^k) \cdot U^k
ight)^{-1}$$

in $\Gamma \llbracket U \rrbracket$.

Different construction of $\tilde{T}(p^k)$, due to Ganter.

- - The K(n)-local Tate homology of BG vanishes (Hovey-Strickland

$$L_{K(n)}BG_+ \xrightarrow{\sim} \mathcal{F}(BG_+, L_{K(n)}S).$$

- $\bullet \implies L_{K(n)}BG_+$ is a commutative Frobenius algebra in the
- Let $I_G: L_{K(n)}S \to L_{K(n)}BG_+$, dual to $L_{K(n)}BG_+ \to L_{K(n)}S$,

Different construction of $\tilde{T}(p^k)$, due to Ganter. G = finite group.

• The K(n)-local Tate homology of BG vanishes (Hovey-Strickland (1999)):

$$L_{K(n)}BG_+ \xrightarrow{\sim} \mathcal{F}(BG_+, L_{K(n)}S).$$

- $\bullet \implies L_{K(n)}BG_+$ is a **commutative Frobenius algebra** in the
- Let $I_G: L_{K(n)}S \to L_{K(n)}BG_+$, dual to $L_{K(n)}BG_+ \to L_{K(n)}S$,

Different construction of $\tilde{T}(p^k)$, due to Ganter. G = finite group.

• The K(n)-local Tate homology of BG vanishes (Hovey-Strickland (1999)):

$$L_{K(n)}BG_+ \xrightarrow{\sim} \mathcal{F}(BG_+, L_{K(n)}S).$$

- $\bullet \Longrightarrow L_{K(n)}BG_+$ is a **commutative Frobenius algebra** in the K(n)-local homotopy category (Strickland (2000)).
- Let $I_G: L_{K(n)}S \to L_{K(n)}BG_+$, dual to $L_{K(n)}BG_+ \to L_{K(n)}S$,

Different construction of $\tilde{T}(p^k)$, due to Ganter. G = finite group.

• The K(n)-local Tate homology of BG vanishes (Hovey-Strickland (1999)):

$$L_{K(n)}BG_+ \xrightarrow{\sim} \mathcal{F}(BG_+, L_{K(n)}S).$$

- $\Longrightarrow L_{K(n)}BG_+$ is a **commutative Frobenius algebra** in the K(n)-local homotopy category (Strickland (2000)). (analogy between $\mathcal{F}(BG_+, L_{K(n)}S)$ and representation ring RG.)
- Let $I_G: L_{K(n)}S \to L_{K(n)}BG_+$, dual to $L_{K(n)}BG_+ \to L_{K(n)}S$, (analogous to $\frac{1}{|G|} \operatorname{Trace} \sum_{g \in G} g: RG \to \mathbb{Z}$.)

41 / 44

Different construction of $\tilde{T}(p^k)$, due to Ganter. G = finite group.

• The K(n)-local Tate homology of BG vanishes (Hovey-Strickland (1999)):

$$L_{K(n)}BG_+ \xrightarrow{\sim} \mathcal{F}(BG_+, L_{K(n)}S).$$

- $\Longrightarrow L_{K(n)}BG_+$ is a **commutative Frobenius algebra** in the K(n)-local homotopy category (Strickland (2000)). (analogy between $\mathcal{F}(BG_+, L_{K(n)}S)$ and representation ring RG.)
- Let $I_G: L_{K(n)}S \to L_{K(n)}BG_+$, dual to $L_{K(n)}BG_+ \to L_{K(n)}S$, (analogous to $\frac{1}{|G|} \operatorname{Trace} \sum_{g \in G} g : RG \to \mathbb{Z}$.)

41 / 44

Different construction of $\tilde{T}(p^k)$, due to Ganter. G = finite group.

• The K(n)-local Tate homology of BG vanishes (Hovey-Strickland (1999)):

$$L_{K(n)}BG_+ \xrightarrow{\sim} \mathcal{F}(BG_+, L_{K(n)}S).$$

- $\Longrightarrow L_{K(n)}BG_+$ is a **commutative Frobenius algebra** in the K(n)-local homotopy category (Strickland (2000)). (analogy between $\mathcal{F}(BG_+, L_{K(n)}S)$ and representation ring RG.)
- Let $I_G: L_{K(n)}S \to L_{K(n)}BG_+$, dual to $L_{K(n)}BG_+ \to L_{K(n)}S$, (analogous to $\frac{1}{|G|}\mathrm{Trace}\sum_{g\in G}g:RG\to\mathbb{Z}$.)

• Define σ^m by

$$E^0X \xrightarrow{P^m} E^0X \otimes_{E_0} E^0B\Sigma_m \xrightarrow{\mathrm{id}\otimes I_{\Sigma_m}^*} E^0X \otimes_{E_0} E_0.$$

• $\sigma^m \colon B \to B$ are non-additive functions, analogous to symmetric powers of representations.

Theorem (Ganter (2004))

$$\exp\left(\sum_{k\geq 0}\frac{\tilde{T}(p^k)(x)}{p^k}\cdot U^{p^k}\right)=\sum_{m\geq 0}\sigma^m(x)\cdot U^m.$$

 \longrightarrow

$$\sum_{k\geq 0} \tilde{T}(p^k)(x) \cdot U^{p^k} = \frac{d}{dU} \log \left(\sum_{m\geq 0} \sigma^m(x) \cdot U^m \right).$$

• Define σ^m by

$$E^0X \xrightarrow{P^m} E^0X \otimes_{E_0} E^0B\Sigma_m \xrightarrow{\mathrm{id}\otimes I_{\Sigma_m}^*} E^0X \otimes_{E_0} E_0.$$

• $\sigma^m \colon B \to B$ are non-additive functions, analogous to symmetric powers of representations.

Theorem (Ganter (2004))

$$\exp\left(\sum_{k\geq 0}\frac{\tilde{T}(p^k)(x)}{p^k}\cdot U^{p^k}\right)=\sum_{m\geq 0}\sigma^m(x)\cdot U^m.$$

 \longrightarrow

$$\sum_{k\geq 0} \tilde{T}(p^k)(x) \cdot U^{p^k} = \frac{d}{dU} \log \left(\sum_{m\geq 0} \sigma^m(x) \cdot U^m \right).$$

• Define σ^m by

$$E^0X \xrightarrow{P^m} E^0X \otimes_{E_0} E^0B\Sigma_m \xrightarrow{\mathrm{id}\otimes I_{\Sigma_m}^*} E^0X \otimes_{E_0} E_0.$$

• $\sigma^m \colon B \to B$ are non-additive functions, analogous to symmetric powers of representations.

Theorem (Ganter (2004))

$$\exp\left(\sum_{k\geq 0}\frac{\tilde{T}(p^k)(x)}{p^k}\cdot U^{p^k}\right)=\sum_{m\geq 0}\sigma^m(x)\cdot U^m.$$

 \longrightarrow

$$\sum_{k\geq 0} \tilde{T}(p^k)(x) \cdot U^{p^k} = \frac{d}{dU} \log \left(\sum_{m\geq 0} \sigma^m(x) \cdot U^m \right).$$

• Define σ^m by

$$E^0X \xrightarrow{P^m} E^0X \otimes_{E_0} E^0B\Sigma_m \xrightarrow{\mathrm{id}\otimes I_{\Sigma_m}^*} E^0X \otimes_{E_0} E_0.$$

• $\sigma^m \colon B \to B$ are non-additive functions, analogous to symmetric powers of representations.

Theorem (Ganter (2004))

$$\exp\left(\sum_{k\geq 0}\frac{\tilde{T}(p^k)(x)}{p^k}\cdot U^{p^k}\right)=\sum_{m\geq 0}\sigma^m(x)\cdot U^m.$$

• ==

$$\sum_{k\geq 0} \tilde{T}(p^k)(x) \cdot U^{p^k} = \frac{d}{dU} \log \left(\sum_{m\geq 0} \sigma^m(x) \cdot U^m \right).$$

Let R = a K(n)-local S-algebra.

- Ganter's operations σ^m are defined on $\pi_0 R$ for any K(n)-local S algebra. (They are defined using a homotopy class in $\pi_0 L_{K(n)} B\Sigma_m^+$.)
- \Longrightarrow Ganter's formula gives a definition of Hecke operators on $\pi_0 R$ for any K(n)-local S-algebra.
- ullet By "suspension", get Hecke operators acting on $\pi_q R$ for $q \geq 0$ as well

Charles Rezk (UIUC) Power operations May 2, 2009 43 / 44

Let R = a K(n)-local S-algebra.

- Ganter's operations σ^m are defined on $\pi_0 R$ for any K(n)-local S algebra. (They are defined using a homotopy class in $\pi_0 L_{K(n)} B\Sigma_m^+$.)
- \Longrightarrow Ganter's formula gives a definition of Hecke operators on $\pi_0 R$ for any K(n)-local S-algebra.
- ullet By "suspension", get Hecke operators acting on $\pi_q R$ for $q \geq 0$ as well

Charles Rezk (UIUC) Power operations May 2, 2009 43 / 44

Let R = a K(n)-local S-algebra.

- Ganter's operations σ^m are defined on $\pi_0 R$ for any K(n)-local S algebra. (They are defined using a homotopy class in $\pi_0 L_{K(n)} B \Sigma_m^+$.)
- \Longrightarrow Ganter's formula gives a definition of Hecke operators on $\pi_0 R$ for any K(n)-local S-algebra.
- By "suspension", get Hecke operators acting on $\pi_q R$ for $q \geq 0$ as

Charles Rezk (UIUC) Power operations May 2, 2009 43 / 44

Let R = a K(n)-local S-algebra.

- Ganter's operations σ^m are defined on $\pi_0 R$ for any K(n)-local S algebra. (They are defined using a homotopy class in $\pi_0 L_{K(n)} B \Sigma_m^+$.)
- \Longrightarrow Ganter's formula gives a definition of Hecke operators on $\pi_0 R$ for any K(n)-local S-algebra.
- By "suspension", get Hecke operators acting on $\pi_q R$ for $q \geq 0$ as well.

Power operations May 2, 2009 43 / 44

http://www.math.uiuc.edu/~rezk/midwest-2009-power-ops.pdf

- Ando, "Isogenies of formal group laws and powen operations in the cohomology theories E_n ", Duke 1995.
- Ando, Hopkins, Strickland, "The sigma orientation is an H_∞ map", Amer. J. 2004; arXiv:math/0204053.
- lacktriangle Bruner, May, McClure, Steinberger, H_{∞} ring spectra and their applications, LNM 1176, 1986.
- Ganter, "Orbifold genera, product formulas, and power operations", Adv. Math, 2006; arXiv:math/0407021.
- Hovey, Strickland, Morava K-theories and localization, Mem. AMS 139, 1999.
- Kashiwabara, "K(2)-homology of some infinite loop spaces", Math. Z., 1995.
- Priddy, "Koszul resolutions", Trans. AMS, 1970.
- Rezk, "The units of a ring spectrum and a logarithmic cohomology operation", J. AMS, 2006; arXiv:math/0407022.
- Rezk, "Power operations for Morava E-theory of height 2 at the prime 2", arXiv:0812.1320.
- Rezk, "The congruence criterion for power operations in Morava E-theory", arXiv:0902.2499.
- Strickland, "Finite subgroups of formal groups", J. Pure Appl. Alg., 1997.
- Strickland, "Morava E-theory of symmetric groups", Topology, 1998; arXiv:math/9801125.
- Strickland, "K(n)-local duality for finite groups and groupoids", Topology, 2000; arXiv:math/0011109.

Charles Rezk (UIUC) Power operations May 2, 2009 44 / 44