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Abstract. We review what is known about power operations for height 2 Morava E-theory,
and carry out some sample calculations.
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1. Introduction

2. Dramatis personae

In this section, we give an minimal overview of definitions and results which lead to the
promised calculations. We hope enough detail is given to convey the global structure of
the ideas; we refer to other papers or later sections (if they’ve been written yet) for more
information.

2.1. Commutative ring spectra and Morava E-theory. We use a convenient category
of structured commutative ring spectra; the category of [EKMM97] is appropriate, although
the particular choice of model will not play an important role in the statement of results.

Fix a formal group G0 over a perfect field k of characteristic p, which is of finite height h,
and let E = EG0/k denote the associated Morava E-theory spectrum. By the theorem of
Hopkins-Miller, E this has an essentially unique structure as a commutative S-algebra, and
we fix such a structure [GH04].
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2 CHARLES REZK

Let R̂ denote the homotopy theory of K(h)-local commutative E-algebras, where
K(h) is the Morava K-theory of height h at the prime p. We can take this homotopy theory
to be the EKMM model category of commutative E-algebras equipped with a suitable model
category structure, where we say a map f : R → R′ is a weak equivalence if it induces
an isomorphism in K(h)-homology. Let M denote the homotopy theory of K(h)-local
E-modules.

We write π?M for the the graded homotopy groups of an E-module or commutative
E-algebra; it is naturally a graded E? = π?E-module. It turns out to be convenient for our
purposes to package these homotopy groups as Z/2-graded objects, rather than Z-graded
objects; we can get away with this because E is even periodic. (The reader should probably
ignore the distinction between Z and Z/2-grading for now. See §5.9 for discussion of the
Z/2-grading.) The category of Z/2-graded E?-modules is denoted ModE? .

Let R̂E denote the homotopy theory of augmented K(h)-local commutative E-
algebras. We can take this to be the slice model category over E of the EKMM category of
commutative E-algebras, with K(h)∗-homology weak equivalences.

We are interested in computing the homotopy groups of derived mapping spaces R̂E(R,F )
between two K(h)-local augmented commutative E-algebras R and F . To do this, we need to

understand the algebraic structure inherited by the the homotopy groups of an object of R̂E.

2.2. Γ-modules and Γ-rings. The homotopy groups π?R of an object R of R̂ carry quite a
bit of structure.

(1) π?R is a strongly graded commutative E?-algebra; “strongly graded commuta-
tive” means that elements in odd degree anticommute and square to zero.

(2) The E?-module π?R carries the structure of a Z/2-graded Γ-module.
(3) The category Mod?Γ of Z/2-graded Γ-modules is actually a tensor category (compatibly

with the underlying tensor product on E?-modules), and multiplication π?R⊗E?π?R→
π?R is a morphism in Mod?Γ. That is, π?R is a Z/2-graded Γ-ring.

See §§5.1–5.9 for more detail.
The Γ-module structure on π?R encodes the action of “power operations” on the homotopy

groups. The structure of Γ-modules is determined by the theory of deformations of subgroups
of the formal group G0/k. The category Mod?Γ will be the main subject of much of this paper,
notably §§3–4 and §7; the special cases of heights 1 and 2 are discussed in §8 and §9.

2.3. T-algebras. We continue the discussion of structure on the homotopy groups of an

object R of R̂.

(4) The Γ-ring π?R satisfies the Frobenius congruence. In short, for a Γ-ring B in
there is a naturally defined E?-module map can∗ : B → B/pB (which relates to the
“canonical subgroup” of a formal group in characteristic p). The Frobenius congruence
for B asserts that for every element x ∈ B in even degree, we have

can∗(x) ≡ xp mod pB.

(See §4.2.)

The Frobenius congruence on π?R is “witnessed” by a natural non-additive operation on
π0R. The paradigm for this is the case of p-adic K-theory, whose homotopy groups are a
“θ-ring” [Bou96]. That is, the homotopy groups of a K(1)-local commutative K-algebra R
admit a natural ring map ψp : π0R→ π0, and a natural operation θp : π0R→ π0R, such that
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ψp(x) = xp + p θp(x). We can think of θp(x) as “witnessing” the congruence ψp(x) ≡ xp

mod p.
In the general setting, there is a monad T on ModE? , so that T-algebras are Γ-rings

equipped with a “witness of the Frobenius congruence”. In particular, the above points
(1)–(4) are subsumed in the following.

(5) For R in R̂, π?R is naturally equipped with the structure of a T-algebra.

We write T for the category of T-algebras; thus, homotopy is a functor π? : hR̂ → T . It is
not easy to give an entirely self-contained description of the category of T-algebras. However,
we have the following congruence criterion, which lets us understand T-algebras which
are p-torsion free.

2.4. Theorem ([Rez09, Theorem A]). If B is a Z/2-graded Γ-ring which is p-torsion free as
an abelian group, then B admits the structure of a T-algebra if and only if B satisfies the
Frobenius congruence. If such a T-algebra structure exists, it is unique.

See §5.11 for more on T-algebras, which were introduced in [Rez09].

2.5. Analytic completion. Recall that π0E ≈Wk[[u1, . . . , uh−1]]. Let m = (p, u1, . . . , uh−1) ⊂
π0E be the maximal ideal, and consider m-adic completion M 7→ M∧

m , which is a functor
ModE? → ModE? . This completion functor is not right exact, but admits a natural best
approximation by a right exact functor A : ModE? → ModE? , which comes with natural
comparison maps M → A(M)→M∧

m . The functor A is often called L0, as it is in fact the
0th left-derived functor of analytic completion. The properties of this functor have been
studied in [GM92] and [HS99, App. A].

There is an equivalent and more elementary description of the functor A, which is sometimes
useful to know. Namely, for an E?-module M , we have

A(M) ≈M [[x0, . . . , xh−1]]/(x0 − p, x1 − u1, . . . , xh−1 − uh−1)M [[x0, . . . , xh−1]].

Here M [[x0, . . . , xh−1]] represents the set of formal power series with coefficients in the
module M ; it is naturally a module over E?[[x0, . . . , xh−1]]. The canonical coaugmentation
η : M → A(M) is the map induced by inclusion of constant power series.

For this reason, we like to refer to A : ModE? → ModE? as the analytic completion
functor, and we say that M is analytically complete (or just analytic) if the map
η : M → A(M) is an isomorphism. We note that any m-adically complete module is
analytically complete, but not conversely [HS99, Thm. A.6]; however, the natural comparison
map A(M)→M∧

m is often an isomorphism, in particular when M is flat [HS99, Thm. A.2
(b)]. An exposition of the properties of A from this power series point of view is given in
[Rez13]; however, most of what we need can be found in [HS99, App. A] where what we call
“analytic completion” is there called “L-completion”.

An E-module spectrum M is K(h)-local if and only if π?M is analytically complete (??).

In particular, for any object R of R̂, the object π?R is analytically complete.
By a result of [BF13], the analytic completion functor lifts to the category T . That is,

there is a functor AT : T → T which on underlying E?-modules coincides with A; we usually
just write A for the lifted functor. We’ll say that an object of T is analytically complete
if its underlying E?-algebra is.

Say that an E?-module M is tame if the higher left derived functors of analytic completion
vanish on it, i.e., if LjA(M) = 0 for j ≥ 1. (Note that the LjA coincide with the higher
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derived functors of m-adic completion, denoted Lj in [HS99].) We say that a T-algebra
is tame if its underlying E?-module is tame. We note that projective modules are tame
[HS99, Thm. A.2 (b)], and also that analytically complete modules are tame [HS99, Thm.
A.6 (b)].

2.6. Cohomology of augmented T-algebras. Let TE? denote the slice category of T over
E? = π?E. That is, an object B of TE? is a T-algebra equipped with a T-algebra map

B → E?. It is clear that taking homotopy groups defines a functor π? : R̂E → TE? . (In

fact, the image of this functor is contained in T̂E? ⊂ TE? , the full subcategory of analytically
complete objects.)

Let ab TE? denote the category of abelian group objects in TE? . There is a pair of adjoint
functors

Q : TE? � ab TE? :J ,
where the right adjoint J is a fully faithful functor, identifying ab TE? with the full subcategory

of TE? consisting of objects φ : B → E? such thatB
2

= 0, whereB = Kerφ is the augmentation
ideal. We will typically represent objects in ab TE? by their augmentation ideals, and write
E? o M for J (M) above. The left adjoint Q is the indecomposable quotient functor

Q(B) = B/B
2
.

We can define a Quillen-type cohomology theory for objects of TE? , denoted

Hn
TE? (B,N),

where B is in TE? and N is in ab TE? . It may be defined as the set of (derived) homotopy
classes of maps B → K(N, n) for the category sTE? of simplicial objects in TE? , equipped
with a suitable model category structure.

2.7. Mapping space spectral sequence. Now we can describe the main spectral sequence.

2.8. Proposition. Let R and F be K(h)-local augmented commutative E-algebras. There is
a conditionally convergent spectral sequence of the form

Es,t
2 =⇒ πt−sR̂E(R,F ),

with

Es,t
2 =

{
TE?(π?R, π?F ) if (s, t) = (0, 0),

Hs
TE? (π?R, π?Ω

tF ) otherwise.

2.9. Composite functor spectral sequence. To compute the cohomology of T-algebras in
our setting, we can use a composite functor type spectral sequence. Like T , the category ab TE?
of abelian group objects admits a lift of the analytic completion functor, which coincides with

the usual one on underlying E?-modules. Thus, we may define Q̂ = AQ : ab TE? → ab TE? ,
the analytic completion of indecomposables.

2.10. Proposition. Let B be an object of TE?, and let N be an object of ab TE? whose
underlying E?-module is analytically complete. Then there is a spectral sequence of the form

Ei,j
2 = Extiab TE? (LjQ̂(B), N) =⇒ H i+j

TE?
(B,N).

Here LjQ̂ are left derived functors of Q̂.

In certain situations, we can identify LjQ̂ ◦ A with A ◦ LjQ.
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2.11. Proposition. Let B be a tame object of TE?, such that the LjQ(B) are also tame. Then

LjQ̂(A(B)) ≈ A(LjQ(B)).

2.12. Computing with abelian group objects. The category ab TE? of abelian group
objects is in fact equivalent to the category Mod?Γ. However, this equivalence does not
manifest itself in the most obvious way. There is a pair of functors

Mod?Γ
S−→ ab TE?

U−→ Mod?Γ.

The functor U is the “obvious” one, which associates to an abelian group object N its
underlying augmentation ideal, which is naturally a Γ-module. This functor U is not an
equivalence of categories. However, the functor S is an equivalence of categories, and
furthermore there is a natural isomorphism of Z/2-graded Γ-modules

US(M) ≈ ω1/2 ⊗M.

Here we write
ωt/2 = Ker[π?E

St+ → π?E]

for the underlying Z/2-graded Γ-module of the augmentation ideal of ESt+ , the E-cochains of
the t-sphere, for t ≥ 0.

Thus we have an isomorphism

Extiab TE? (M,N) ≈ ExtiMod?Γ
(S−1(M),S−1(N)).

In practice, it often seems more convenient to write these sorts of things in terms of the
underlying Γ-modules of M and N . To do this, we note that if M is a p-torsion free object of
ab TE? , then there exists an essentially unique object M ′ of Mod?Γ such that ω1/2⊗M ′ ≈ U(M)
as Γ-modules. We will typically write “ω−1/2 ⊗M” for this object M ′ when it exists — an
abuse of notation, since ω1/2 is not an invertible object in Mod?Γ. Thus, if M and N are
p-torsion free objects, we have an isomorphism

Extiab TE? (M,N) ≈ ExtiMod?Γ
(ω−1/2 ⊗M,ω−1/2 ⊗N).

Furthermore, if M and N happen to also be concentrated in even degrees, then we can
“remove” another ω1/2 in the same way, and we get an isomorphism

Extiab TE? (M,N) ≈ ExtiMod?Γ
(ω−1 ⊗M,ω−1 ⊗N).

2.13. Example 1. Let R = ES2m−1
+ where 2m − 1 is an odd positive integer, and let

F = E o ΩtE, the “square-zero extension” of E by ΩtE, where t ∈ Z. Then

π0R̂E(ES2m−1
+ , E o ΩtE) ≈ πtF(TAQSK(h)((SK(h))

S2m−1
+ ), E),

the E-cohomology of the K(h)-localized topological André-Quillen homology of the spectrum
of SK(h)-valued cochains on the sphere. Behrens-Rezk identify these groups with πt(E ∧
ΦhS

2m−1)K(h). The space R̂E(ES2m−1
+ , E o ΩtE) is an infinite loop space.

The underlying Γ-module of Ker(π?(E o ΩtE)→ π?E) is isomorphic to ωt/2 ⊗ nul, where
nul is a certain Γ-module whose underlying E?-module is isomorpic to E?, but which has
“trivial” Γ-module structure.

We have that B = π?E
S2m−1

+ is a free strongly graded commutative E?-algebra on one
generator, whence LjQ(B) ≈ 0 for j ≥ 1, and Q(B) itself has underlying Γ-module UQ(B) ≈
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ω(2m−1)/2. As the objects in question are analytically complete, they are tame, so we have a

similar result for LjQ̂(B). Thus the composite functor spectral sequence collapses to give

Hs(π?R, π?Ω
tF ) ≈ Extsab TE? (ω(2m−1)/2, ωt/2 ⊗ nul)

≈ ExtsMod?Γ
(ωm−1, ω(t−1)/2 ⊗ nul).

For the cases of heights h = 1 and 2, we will show (by explicit calculation) that these groups
vanish except when s = h. Thus the resulting mapping space spectal sequence also collapses
to give, for h = 1

π0R̂E(ES2m−1
+ , E o ΩtE) ≈ Ext1

Mod?Γ
(ωm−1, ωt/2 ⊗ nul)

≈

{
E0/p

m−1E0 if t even,

0 if t odd.

For h = 2, we get

π0R̂E(ES2m−1
+ , E o ΩtE) ≈ Ext2

Mod?Γ
(ωm−1, ω(t+1)/2 ⊗ nul)

≈

{
A1/(s(A0) + b′m−1A1) if t odd,

0 if t even.

The object Pm = A1/(s(A0) + b′m−1A1) is a certain E0-module, for which the reader will
need to read ahead to understand. We note here that P1 = 0, and that P2 ≈ (E0/pE0)

⊕
(p−1),

while in general Pm is isomorphic to some complicated quotient of (E0/p
m−1E0)⊕(p−1).

2.14. Example 2. Let R = Σ∞+ Z, and let F = E × E. Then

R̂E((E ∧ Σ∞+ Z)K(h), E × E) ≈ (Comm S-alg)(Σ∞+ Z, E).

This space is an H-space, using the evident coproduct on Σ∞+ Z. In fact, it is an infinite loop
space; it is equivalent to the function spectrum F(HZ, gl1E).

We have that B = π?R is the analytic completion of a Laurent polynomial algebra:
B ≈ AB′, where B′ = E?[t, t

−1]. This algebra is smooth, so LjQ(B′) ≈ 0 for j ≥ 1 and
Q(B′) ≈ det, where det is a certain Γ-module whose underlying E?-module is E?. We

conclude that LjQ̂(B) ≈ 0 for j ≥ 1 and Q̂(B) ≈ det.
The underlying Γ-module of π?Ω

tF is ωt/2.
The composite functor spectral sequence thus degenerates to give

Hs
TE? (π?R, π?Ω

tF ) ≈ Extsab TE? (det, ωt/2)

≈

{
ExtsMod∗Γ

(ω−1 ⊗ det, ωt/2−1) if t is even,

0 if t is odd.

Assume now that G0/k where k = Fp, the algebraic closure of Fp. For the cases of heights
h = 1 and 2, we will show (by explicit calculation) that these Ext-groups vanish except when
s = h− 1 and t = 2h, in which case

Exth−1
Mod?Γ

(ω−1 ⊗ det, ωh−1) ≈ Zp
for h = 1, 2. Also, in either case (11.7) we have that

TE?(π?R, π?F ) = T (π?R, π?E) ≈ F×p .
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Thus, for height 1, the resulting mapping space spectral sequence collapses to give

πn(Comm S alg)(Σ∞+ Z, E) ≈


F×p if n = 0,

Zp if n = 2,

0 otherwise.

For height 2, we get

πn(Comm S alg)(Σ∞+ Z, E) ≈


F×p if n = 0,

Zp if n = 3,

0 otherwise.

This proves a conjecture of Lurie in the case of height 2.

3. Deformations

The theory of power operations for Morava E-theory is controlled by the deformation
theory of finite subgroups of its formal group Guniv, which is the universal deformation of
a formal group G0 over a perfect field k. Any finite subgroup K ≤ G of a deformation G
determines a quotient homomorphism f : G→ G/K, and the quotient G/K is provided with
the structure of a deformation of G0 via factorization of a power of the Frobenius isogeny
of G0. In this section we review this deformation theory, which is a consequence of work of
Strickland.

3.1. The category of deformations. We recall the “deformation of Frobenius” graded
category scheme associated to a formal group, as described in [Rez09, §11]. In the following,
“formal groups” are assumed to be one-dimensional and commutative.

Fix a prime p, an integer h ≥ 1, a perfect field k of characteristic p, and a formal group G0

over k of height h.
If R is a ring of characteristic p, we write φ : R → R for φ(r) = rp. For each formal

group G over a ring R of characteristic p, the Frobenius isogeny Frob: G → φ∗G is the
homomorphism of formal groups induced by the relative Frobenius map on rings. We write
Frobr : G→ (φr)∗G for the homomorphism inductively defined by Frobr = φ∗(Frobr−1)◦Frob.

Given a complete local ring R, with maximal ideal m ⊆ R such that p ∈ m, and quotient
map π : R→ R/m, we define a category Def(R) = DefG0/k(R) as follows.

• Objects (G, i, α) are deformations of G0 to R. That is, G is a formal group over R,
i : k → R/m is an inclusion of fields, and α : π∗G→ i∗G0 is an isomorphism of formal
groups over R/m.
• Morphisms f : (G, i, α)→ (G′, i′, α′) are deformations of a power of Frobenius. That

is, f : G→ G′ is a homomorphism of formal groups over R for which there exists an
r ≥ 0 such that (i) i ◦ φr = i′ as maps k → R/m (so that (i ◦ φr)∗G0 = (i′)∗G0), and
(ii) the square

(3.2)

π∗G
f

//

α
��

π∗G′

α′

��

i∗G0
Frobr

// (i ◦ φr)∗G0

of homomorphisms of formal groups over R/m commutes.
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Every morphism of Def(R) is a deformation of Frobr for a unique r ≥ 0, called the height
of the morphism. Let Def(R)0 ⊂ Def(R) be the subcategory consisting of morphisms of
height 0, i.e., of isomorphisms between deformations.

3.3. Remark. There is an evident functor U : DefG0(R) → Isog(R) from the category of
deformations to the category of formal groups over R and isogenies, on objects sending
(G, i, α) 7→ G. The functor U can be identified as the “Grothendieck construction” of a
functor DG0/k : Isog(R)→ Sets, as we now describe.

To each formal group G over R, let DG0/k(G) be the set of pairs (i, α) such that (G, i, α) is
a deformation of G0 to R. For an isogeny f : G→ G′ of rank pr, let DG0/k(f) : DG0/k(G)→
DG0/k(G

′) be the function that sends (i, α) 7→ (i ◦φr, α′), where α′ is the unique isomorphism
of formal groups making (3.2) commute. We can think of DG0/k(G) as the set of “G0-
deformation structures” on the formal group G, and we have just described how to “push
forward” a G0-deformation structure along any isogeny. Now DefG0(R) is a category whose
objects are pairs (G, d), where d ∈ DG0/k(G), and whose morphisms (G, d) → (G′, d′) are
isogenies f : G→ G′ such that DG0/k(f)(d) = d′.

3.4. Representability of the deformation category. By the deformation theory of Lubin-
Tate, for any two objects of Def(R)0 there is at most one isomorphism between them. Thus,

it makes sense to form the quotient category Sub(R)
def
= Def(R)/Def(R)0, by identifying

isomorphic objects. The quotient functor Def(R)→ Sub(R) is an equivalence of categories,
and Sub(R) is a “gaunt” category, i.e., every morphism is an identity map. The notation
comes from the fact that there is a one-to-one correspondence{

morphisms in Sub(R)
with source (G, i, α)

}
←→ {finite subgroups of G} ,

which associates a morphism f : G→ G′ with its kernel Ker f ≤ G.
Let Subr(R) denote the set of morphisms of height r in Sub(R), which correspond to

subgroups of degree pr.

3.5. Proposition (Lubin-Tate; Strickland). Let G0/k be of height h over a perfect field k.
For each r ≥ 0, there exists a complete local ring Ar which carries a universal height r
morphism f runiv : (Gs, is, αs) → (Gt, it, αt) ∈ Subr(Ar). That is, the operation f r 7→ g∗(f r)
defines a bijective correspondence from the set of local homomorphisms g : Ar → R to the set
Subr(R) of height r-morphisms in the category Sub(R). Furthermore, we have that:

(1) A0 ≈Wpk[[a1, . . . , ah−1]].
(2) Under the map s : A0 → Ar which classifies the source of the universal height r map,

Ar is finite and free as an A0-module.

Proof. For r = 0 this is the theory of Lubin and Tate [LT66]. For r > 0 this is a theorem of
Strickland [Str97]. �

Thus, Sub =
∐

Subr is a “affine graded-category scheme”. In particular, there are ring
maps

s = sk, t = tk : A0 → Ak, µ = µ`,k : Ak+` → Ak
s⊗A0

tA`
classifying source, target, and composition of morphisms. Note that s0, t0, µ`,0, and µ0,k

are all isomorphisms (since Sub0 consists entirely of identity maps), and that µ ◦ s = 1⊗ s,
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µ◦t = t⊗1, and (µ⊗1)◦µ = (1⊗µ)◦µ (because Sub is a category object). As a consequence,
µ is map of A0-bimodules, which we represent with the notation

µ : tAk+`
s → tAk

s⊗A0

tA`
s.

3.6. Canonical subgroups. For any deformation (G, i, α) of G0 to a ring R of characteristic
p, there is for each r ≥ 0 a morphism in Defr(R) of the form

Frobr : (G, i, α)→ ((φr)∗G, i ◦ φr, (φr)∗(α)).

That is, Frobenius is a deformation of Frobenius. The kernel of Frobr is the canonical
subgroup of G of rank pr.

The universal example of this map is classified by a ring homomorphism

canr : Ar → A0/(p),

which satisfies canr ◦s = π and canr ◦t = φr ◦ π, where π : A0 → A0/(p) denotes the evident
projection. We note that the further projection

Ar
canr−−→ A0/(p)→ A0/m = k

is the map classifying Frobr : G0 → (φr)∗G0.

4. Γ-modules and p-isogeny modules

In this section, we give two equivalent descriptions of a category of “quasi-coherent sheaves
over DefG0/k”, called Γ-modules and p-isogeny modules. This summarizes some of the material
discussed in [Rez09, §11].

4.1. The category of Γ-modules. For a given height h formal group G0/k, we define a
category of Γ = ΓG0/k-modules. A Γ-module is an A-module M equipped with A0-module
homomorphisms

Pk = Pk,M : M → tAk
s⊗A0 M

for k ≥ 0, such that P0 = id, and for all k, ` ≥ 0 the square

M
Pk

//

Pk+`

��

Ak
s⊗A0 M

id⊗P`
��

Ak+`
s⊗A0 M µ⊗id

// Ak
s⊗A0

tA`
s⊗AM

commutes. (In this definition, Ak
s⊗A0M is made into an A-module via the ring homomorphism

t : A0 → Ak, hence our notation.) A morphism of Γ-modules is a map M → N of A0-modules
which commutes with the structure maps Pk.

Given two Γ-modules M and N , their tensor product is the Γ-module with underlying
A0-module M ⊗A0 N , and with structure map

Pk : M ⊗A0 N → Ak
s⊗A0 (M ⊗A0 N)

defined by

Pk(m⊗ n)
def
=
∑

a′b′ ⊗m′′ ⊗ n′′, where Pk(m) =
∑

a′ ⊗m′ and Pk(n) =
∑

b′ ⊗ n′′.
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This tensor product makes Γ-modules into a symmetric monoidal category, with unit object
1 being A0 equipped with structure maps

Pk = tk : A0 → Ak
s⊗A0 A0 ≈ Ak.

We write ModΓG0/k
for the category of Γ-modules for G0/k, or simply ModΓ if the formal

group is clear.

4.2. Γ-rings. A Γ-ring is a commutative A0-algebra B together with a Γ-module structure
on B, so that multiplication B ⊗A0 B → B is a morphism of Γ-modules. The initial Γ-ring is
1 = A0.

A Γ-ideal in a Γ-ring B is an ideal I ⊆ B which is also a Γ-submodule of B; that is, for
all k ≥ 0 we have

Pk(I) ⊆ Ak
s⊗A0 I.

If I ⊆ B is a Γ-ideal, then B/I inherits the structure of a Γ-ring. In particular, pA0 ⊆ A0 is
a Γ-ideal, and thus A0/(p) is a Γ-ring (in a unique way). However, note that the maximal
ideal m ⊂ A0 is not a Γ-ideal if h ≥ 2.

A Γ-ring B is said to satisfy the Frobenius congruence if the diagram

B
P1

//

��

A1
s⊗A0 B

can⊗ id
��

B/pB
φ
// B/pB (A0/p)⊗A0 B

commutes.

4.3. The ring Γ of operations. The associative ring Γ is a graded ring Γ ≈
⊕

Γ[k], where
Γ[k] = HomA0(sAk, A0) is the A0-linear dual of Ak (where Ak is viewed as an A0-module using
sk), and the ring structure of Γ is induced by the maps µk,`. The category comodules for
(Ar, s, t, µ) described above is isomorphic to the category of modules for the ring Γ. Explicitly,
the isomorphism of categories is obtained by associating Pk : M → tAk

s⊗A0 M with its adjoint
Γ[k]⊗A0 M ⊂ Γ⊗A0 M →M .

In fact, the structure of graded affine category scheme (Ar, s, t, µ) makes Γ into a twisted
commutative bialgebra, as described in [Rez09, §5]. We remind the reader that although Γ
contains Γ[0] = A0 as its degree 0 part, the subring A0 is not central in general.

In this paper, we will usually use the coalgebraic formulation of Γ-modules as described
above, but will nonetheless call them “Γ-modules”.

4.4. A remark on “handedness” conventions. In this paper, we are regarding coactions
as happening on the left, i.e., via maps M → Ak ⊗A0 M . For this reason, it seems most
convenient here to regard the adjoint action as also happening on the left, i.e., via maps
Γ[k]⊗A0 M →M . This is not necessarily the same convention used in other papers.

The only reason we need to talk about Γ at all is so that we can quote the results of [Rez11],
which we will reinterpret in the language of coactions in §7. Our choice here is consistent
with [Rez11], where Γ is also regarded as acting on the left.

In [Rez09], we used the same left coaction convention we have here. However, in that
paper, we regarded Γ as acting on the right (so that properly speaking, what is here called Γ
is the opposite of the Γ in that paper).
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In [Rez12], we used conventions consistent with having coactions on the right, and actions
on the left, although neither actually appear explicitly. In particular, this means that the
description of Γ⊗ Z/p (there simply called Γ) given in §4 of that paper, is consistent with
treatment of Γ here.

The author finds this business somewhat confusing, and apologizes for any resulting
confusion in the reader.

4.5. p-isogeny modules over deformations. Here we briefly describe an equivalent for-
mulation of the notion of a Γ-modules called p-isogeny modules , which will provide us with
convenient language for certain constructions. (These were described in [Rez09, §11.13] as
“quasi-coherent sheaves over Def”.)

Let G0/k be a height h formal group. A p-isogeny module over deformations of G0/k
is data M = {MR,M g} consisting of

• for each complete local ring R, a contravariant functor MR : Def(R)op → ModR from
the category of deformations of G0/k to R, to the category of R-modules, and
• for each local homomorphism g : R→ R′, a natural isomorphism

M g : R′ ⊗RMR =⇒MR′ ◦ g∗ : Def(R)op → ModR′ .

where g∗ : Def(R)→ Def(R′) is the evident functor induced by base change along g.

We require that for R
g−→ R′

h−→ R′′ that both ways of constructing a natural isomorphism
R′′ ⊗RMR →MR′′ ◦Mh ◦Mg coincide (up to the evident coherence isomorphism), and that
MidR is the identity transformation. A morphism of p-isogeny modules M → N is a collection
of natural maps MR → NR commuting with all the structure.

It is straightforward to check [Rez09, Prop. 11.16] that the category of p-isogeny modules
is equivalent to the category of Γ-modules. Explicitly, given a Γ-module (M, {Pr}), the
associated p-isogeny module M is given by

MR((G, i, α)) = RρG⊗A0 M,

where ρG : A0 → R classifies (G/R, i, α), and f ∗ = MR(f) : MR((G2, i2, α2)) →
MR((G1, i1, α1) is the composite

Rρf⊗Ar Ar
t⊗A0 M

id⊗ id⊗Pr−−−−−−→ Rρf⊗Ar Ar
t⊗A0

tAr
s⊗A0 M

id⊗mult⊗id−−−−−−−→ Rρf⊗Ar Ar
s⊗A0 M,

where ρf : Ar → R classifies f : (G1, i1, α1) → (G2, i2, α2). Conversely, a p-isogeny module
determines a Γ-module, by evaluating at the universal deformation (defined over A0), and at
the universal height r isogenies (defined over Ar).

We will use the equivalence of Γ-modules and p-isogeny modules without comment in this
paper.

4.6. p-isogeny rings over deformations. A p-isogeny ring is a commutative ring object
in p-isogeny modules. The initial p-isogeny ring is O, defined by OR((G, i, α)) = R. A
p-isogeny B ring satisfies the Frobenius congruence if and only if for every deformation
(G, i, α) over a ring R of characteristic p, the map

Rφ⊗R BR((G, i, α))
Bφ−→
∼

BR((φ∗G, i ◦ φ, φ∗α))
BR(Frob)−−−−−→ BR(G, i, α)

is equal to the relative Frobenius map on the ring BR(G, i, α); i.e., B carries the relative
Frobenius map of deformations to the relative Frobenius map of rings. This evidently coincides
with the “Frobenius congruence” condition for Γ-rings.
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4.7. The Γ-ring OGuniv
. Given a deformation (G, i, α) of G0/k to R, let OG denote the ring

of functions on G. It is isomorphic as an algebra to R[[x]]. Tautologically, (G, i, α)/R 7−→ OG
is a p-isogeny ring. It corresponds to a Γ-ring OGuniv

, whose underlying algebra is the ring of
functions on the universal deformation of G0/k.

4.8. The Γ-module ω of invariant 1-forms. Given a deformation (G, i, α) of G0 to R, let
ωG denote the set of invariant 1-forms on the formal group G. Then ωG is naturally an R
module, free of rank 1, and it is compatible with base change, in the sense that if θ : R→ R′

is a local homomorphism, then there is a canonical isomorphism

ωθ∗G ≈ R′θ⊗R ωG.
Furthermore, given a morphism f : (G, i, α) → (G′, i′, α′) in Def(R), pullback of 1-forms
defines a map f ∗ : ωG′ → ωG.

Thus, ω naturally carries the structure of a p-isogeny module, and thus we obtain a
Γ-module ω, with underlying A0-module ωGuniv

, and with structure map Pr : ω → Ar
s⊗A0 ω

the map

ω = A0 ⊗A0 ω
t⊗id−−→ Ar

t⊗A0 ω
f∗−→ Ar

s⊗A0 ω,

where f : s∗Guniv → t∗Guniv is the universal deformation of Frobenius of height r. It is clear
that as a Γ-module, ω ≈ I/I2, where I = Ker(OGuniv

→ 1).

4.9. Frobenius-trivial Γ-modules and inverting ω. Although ω is a rank one A0-module,
it is not invertible as a Γ-module; i.e., there is no Γ-module M such that ω⊗M ≈ 1. However,
there are circumstances in which it is possible to unambiguously define a module “ω−1 ⊗M”,
namely when M is p-torsion free and Frobenius-trivial.

Choose a basis u ∈ ω. Then Pk,ω(u) = bk ⊗ u for some bk ∈ Ak.

4.10. Lemma. The element bk ∈ Ak is a divisor of pk, i.e., pk = bkc for some c ∈ Ak.

Proof. A map f : (G1, i1, α1) → (G2, i2, α2) in Defk(R) has kernel killed by [pk], and so
[pk]G1 = g ◦ f for some isogeny g : G2 → G1. If u is a basis of ωG1 , then pku = f ∗(g∗(u)).
Applied to the universal example of a deformation of Frobk, this proves the claim. �

4.11. Proposition. If M,N are Γ-modules, and if N has no p-torsion, then

ω ⊗− : HomΓ(M,N)→ HomΓ(ω ⊗M,ω ⊗N)

is an isomorphism.

Proof. This is a straightforward verification, using the fact that according to the hypothesis
and (4.10), multiplication by bk on Ak

s⊗A0 (ω ⊗N) is injective. �

Say that a Γ-module M is Frobenius-trivial if the composite of

M
P1,M−−−→ A1

s⊗A0 M
can1⊗ idM−−−−−−→ A0/pA0 ⊗A0 M = M/pM

is 0. In terms of the associated p-isogeny module M , Frobenius-triviality is equivalent to
the following: for any deformation (G, i, α) of G0/k to a ring R of characteristic p, the map
MR(FrobG) : MR(φ∗G, i ◦ φ, φ∗α)→MR(G, i, α) is equal to 0.

As a consequence, if M is Frobenius trivial, we have that MR(f ◦FrobG1) = 0 for any map
f : (φ∗G1, i1 ◦ φ, φ∗α1) → (G2, i2, α2) in Def(R) where R is of characteristic p. Recall that
a morphism g : (G1, i, α1) → (G2, i2, α2) in Def(R) factors as g = f ◦ FrobG1 if and only if



POWER OPERATIONS IN MORAVA E-THEORY 13

g∗ : ωG2 → ωG1 is equal to 0. Applied to the universal example this means that when M is
Frobenius-trivial, the composite

M
Pk,M−−−→ Ak

s⊗A0 M → (Ak/(bk))
s⊗A0 M

is 0 for all k ≥ 1, where bk ∈ Ak are the elements associated to the basis u ∈ ω introduced
above.

Given a Γ-module M , let D(M) denote the solution groupoid of the equation ω ⊗X ≈M .
That is, objects of D(M) are pairs (N, f : ω ⊗N →M), where N is a Γ-module and f is an
isomorphism of Γ-modules, and whose maps (N, f)→ (N ′, f ′) are Γ-module isomorphisms
g : N → N ′ such that f ′ ◦ (g ⊗ id) = f .

4.12. Proposition. If M is a Γ-module with no p-torsion which is Frobenius-trivial, then
then D(M) is contractible.

Proof. As noted above, Frobenius-triviality implies that Pk,M(M) ⊆ bkAk
s⊗A0 M , while by

(4.10) the p-torsion free condition implies that multiplication by bk is injective on Ak
s⊗A0 M .

Thus we may define a Γ-module N with the same underlying A0-module as M , so that
Pk,N (x) = b−1

k Pk,M (x), with an evident isomorphism ω ⊗N ≈M . Thus D(M) is non-empty;
contractibility follows using (4.11) �

We can summarize the above results as follows.

4.13. Proposition. The functor ω ⊗− : ModΓ → ModΓ given by tensoring with ω restricts
to an equivalence

ω ⊗− : (ModΓ)tf
∼−→ (ModΓ)tf,Ft

from the full subcategory of p-torsion free Γ-modules, to the full subcategory of p-torsion free
and Frobenius-trivial Γ-modules.

4.14. The null Γ-module. Let nul denote the Γ-module with underlying A0-module nul =
A0, and with Pk,nul = 0 for all k ≥ 1. Thus, nul has “trivial Γ-action”.

Given an A0-module M , we abuse notation and write nul ⊗M for the Γ-module with
underlying A0-module M and trivial Γ-action. The induced functor

nul⊗− : ModA0 → ModΓ

is fully faithful; in fact, HomΓ(nul, nul) ≈ A0 is the endomorphism ring of nul as a Γ-module.

4.15. The pth power map and the operation Ψ. Every formal group has a pth power
endomorphism [p] : G→ G. If G is a defomation of a height h formal group G0, then [p] is an
isogeny of rank ph. Here we point out a subtlety in the way that the pth power map becomes
a deformation of Frobh.

Because G0/k has height h, Ker[p] = Ker Frobh, and thus there is a commutative diagram
of homomorphisms

G0
Frobh

//

[p]   

(φh)∗G0

G0

ψ0

∼
;;

where ψ0 is an isomorphism. In particular,

[p] : (G0, id, id)→ (G0, φ
h, ψ0)
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describes a morphism in Defh. More generally, for an arbitrary deformation (G, i, α) of G0 to
R, we get a morphism

[p] : (G, i, α)→ (G, i ◦ φh, i∗ψ0 ◦ α)

in Def(R). Note that this morphism is not generally an endomorphism of an object of Def(R).
There are ring homomorphisms

Ψ: A0 → A0, [p] : Ah → A0,

which represent the operations

(G, i, α) 7→ (G, i ◦ φh, i∗ψ0 ◦ α), (G, i, α) 7→
(
[p] : (G, i, α)→ (G, i ◦ φh, i∗ψ0 ◦ α)

)
,

and which fit into a commutative diagram

A0
s
//

id   

Ah

[p]
��

A0
t

oo

Ψ~~

A0

It is immediate from the above discussion that the ring homomorphism Ψ: A0 → A0

is identical to the automorphism (φh, ψ̂0)
∗ : A0 → A0 induced by the map (φh, ψ̂0) ∈

FmlGph(G0/k,G0/k), using the notation of §6.2, and where ψ̂0 is the composite G0
ψ0−→

(φh)∗G0 → G0 covering φh : SpecFp → SpecFp.
For any Γ-module M , define ΨM : M →M to be the composite

M
Ph−→ Ah

s⊗A0 M
[p]⊗id−−−→ A0 ⊗A0 M = M.

This map ΨM is Ψ-linear, in the sense that ΨM (αm) = Ψ(α)ΨM (m) for α ∈ A0 and m ∈M .
For the unit Γ-module 1 = A0, the map Ψ1 : 1→ 1 coincides with the ring homomorphism
Ψ: A0 → A0 described above.

4.16. Remark. There is an important special case, in which (i) G0 is defined over Fph (so

that there is a canonical identification (φh)∗G0 = G0), and (ii) Frobh : G0 → G0 is central
in the ring of endomorphisms of (G0)Fp/Fp. Given (i), condition (ii) is equivalent to the

assertion that ψ0 = [λ] for some λ ∈ Z×p . In this case, for every deformation (G, i, α) the

endomorphism [λp] : (G, i, α)→ (G, i, α) is a deformation of Frobh.
In this special case, the ring homomorphism Ψ: A0 → A0 is the identity map, and for a

Γ-module M the map ΨM : M →M is a map of A0-modules. On the module ω of invariant
1-forms, Ψω : ω → ω is given by Ψ(u) = λpu.

5. Γ-modules and power operations

We briefly review the relation between power operations on Morava E-theory, and the
theory of Γ-modules described above. The punchline is that the homotopy groups of K(h)-
local commutative E-algebras are “analytically complete T-algebras” for a certain monad T.
(§5.11). We also discuss abelian group objects in T-algebras (§5.12).
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5.1. K(h)-local commutative E-algebras and E-modules. Fix a height h formal group
G0/k over a perfect field k, and let E = EG0/k be its associated Morava E-theory spectrum,
which is canonically a commutative S-algebra. Recall that π∗E is even periodic, and that
π0E = A0, the ring which classifies deformations of G0/k.

Let M =MG0/k denote the homotopy theory of E-module spectra, and let R = RG0/k

denote the homotopy theory of E-algebra spectra. Both these homotopy theories are realized
by the model category structure described in EKMM, in which weak equivalences are maps
which are weak equivalences on underlying spectra.

Let M̂ = M̂G0/k denote the homotopy theory of K(h)-local E-module spectra, and

let R̂ = R̂G0/k denote the homotopy theory of K(h)-local E-algebra spectra. These are
localizations of M and R, with weak equivalences the maps which are K(h)-homology
isomorphisms on underlying spectra.

5.2. Homotopy of E-modules and Z/2-graded E?-modules. Recall [Rez09, §2] that
we may define a category ModE? of Z/2-graded E0-modules, whose objects are pairs M =
{M0,M−1} of E0-modules. We will call such objects E?-modules. This category becomes a
symmetric monoidal category via an ω-twisted tensor product, defined by

(5.3) M ⊗N def
= {(M0 ⊗E0 N0)⊕ (M−1 ⊗E0 N−1 ⊗E0 ω), (M0 ⊗E0 N−1)⊕ (M−1 ⊗E0 N0)},

where ω = π2E. We write ω for the E?-module {π2E, 0} and ω1/2 for the E?-module {0, π0E},
whence ω1/2 ⊗ ω1/2 ≈ ω.

We define a functor

π? : hM→ ModE? , π?M = {π0M,π−1M}
from E-modules to the category of E?-modules. It is straightforward to check that this
functor is weakly monoidal, in the sense that there is an evident map

π?M ⊗ π?N → π?(M ∧E N)

satisfying suitable coherence properties. Observe that with these conventions we have
π?Σ

−kE ≈ ωk/2 for all k ∈ Z. (Note that ω1/2 is invertible in ModE? .)
We can recover the usual Z-graded homotopy groups of a module from the Z/2-graded

ones, by
πkM ≈ HomModE?

(ω−k/2, π?M).

It is not hard to show that this describes a monoidal equivalence between ModE? and the
more familiar category of Z-graded E∗-modules.

5.4. π0R as a Γ-ring. We now recapitulate the following statement, which is described in

detail in [Rez09]: the homotopy groups of an object R ∈ R̂ are naturally equipped with the
structure of a “Z/2-graded Γ-ring satisfying the Frobenius congruence”.

Given m ≥ 1, let ρ denote the m-dimensional real permutation representation of Σm, and
let ρ ⊂ ρ denote the reduced representation (of codimension 1.) Recall that given a map of
spectra x : Sk → R, the commutative ring structure on R gives a “total mth power” map
Pm(x) : Sk∧BΣkρ

m ≈ BΣkρ
m → R for all m ≥ 0. Applied to m = pr, this construction produces

abelian group homomorphisms

Pr : πkR→ (E0BΣkρ
pr/I)⊗E0 πkR,

where I denotes the ideal generated by the image of transfer maps along the restriction to
Σi × Σpr−i ⊂ Σpr for all 0 < i < pr.
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Strickland’s theorem [Str98] asserts a canonical isomorphism of rings

E0BΣpr/I ≈ Ar,

Using this, we obtain a Γ-module structure on π0R by

Pr : π0R→ (E0BΣpr/I)⊗E0 π0R = Ar
s⊗A0 π0R.

With this structure, π0R is in fact a Γ-ring which satisfies the Frobenius congruence (§4.2).

5.5. Remark. In fact, the ring Γ of §4.3 is precisely the ring of additive operations on π0 of a

K(h)-local commutative E-algebra. That is, it is the endomorphisms of the functor R̂ → Ab
defined by R 7→ π0R. This is the point of view taken in [Rez09, §6]; see also [Rez11, §3.8].

We note some significant examples.

• The natural Γ-ring structure on π0E is precisely the initial Γ-ring 1 = A0.
• The natural Γ-ring structure on π0E

CP∞+ = E0CP∞ is precisely the Γ-ring OGuniv
of

functions on the universal deformation of G0.
• The natural Γ-module structure on π2E ≈ Ker[π0E

CP1
+ → π0E] is precisely the

Γ-module ω of invariant 1-forms.

5.6. Z/2-graded Γ-modules and Γ-rings. Recall Recall [Rez09, §2 and §7], that we may
define a category Mod?Γ of Z/2-graded Γ-modules, whose objects are pairs M? = {M0,M1}
of Γ-modules, which becomes a symmetric monoidal category via an ω-twisted tensor product.
The formula for this tensor product is exactly that of (5.3), though now ω represents the
Γ-module of invariant 1-forms (which is naturally isomorphic to π2E.)

As a notational short-hand, we identify ModΓ with Modeven
Γ ⊂ Mod?Γ, the full subcategory

of Z/2-graded Γ-modules concentrated in even degree. Thus, we write ω for the Z/2-graded
Γ-module {ω, 0} = {π2E, 0}.

As in §5.2, we write ω1/2 for the Z/2-graded Γ-module {0, π0E}. As before, we have
ω1/2 ⊗ ω1/2 ≈ ω. Furthermore, there are evident isomorphisms

π?E
Sk = Ker[π?E

Sk+ → π?E] ≈ ωk/2

of Γ-modules for k ≥ 0. Note that ω1/2 is not invertible as a Z/2-graded Γ-module, though it
is invertible as an E?-module.

Commutative monoid objects in Mod?Γ form a category Ring?Γ of Z/2-graded Γ-rings.

5.7. 1
2
-Frobenius-triviality and inverting ω1/2. Say that a Z/2-graded Γ-module M =

{M0,M−1} is 1
2
-Frobenius-trivial if the Γ-module M0 is Frobenius-trivial in the sense of

§4.9.

5.8. Proposition. The functor ω1/2⊗− : Mod?Γ → Mod?Γ given by tensoring with ω1/2 restricts
to an equivalence

ω1/2 ⊗− : (Mod?Γ)tf
∼−→ (Mod?Γ)tf, 1

2
Ft

from the full subcategory of p-torsion free Γ-modules, to the full subcategory of p-torsion free
and 1

2
-Frobenius-trivial Γ-modules.

Proof. This is immediate from (4.13) and the definition of the ω-twisted tensor product. �

Clearly, we can apply the above proposition iteratively. Thus, for any k ≥ 0 there are
equivalences of full subcategories ωk/2 ⊗ − : (Mod?Γ)tf

∼−→ (Mod?Γ)tf, k
2

Ft, the definitions and

verifications of which we leave as an exercise for the reader.
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5.9. π?R as a Z/2-graded Γ-ring. It is a fact (see discussion in [Rez09, §7.5]) that the
zero-section inclusion BΣ−ρm → BΣ0

m induces an isomorphism

Ar = E0BΣpr/I
∼−→ E0BΣ−ρpr /I.

The induced map

Pr : π−1R→ (E0BΣ−ρpr /I)⊗E0 π−1R = Ar
s⊗A0 π−1R,

defines a Γ-module structure on π−1R.
The power construction Pm is multiplicative, in the sense that the diagram

BΣ(a+b)ρ
m

Pm(xy)
//

diag
��

R

BΣaρ
m ∧BΣbρ

m Pm(x)∧Pm(y)
// R ∧R

mult

OO

commutes for x ∈ πaR, y ∈ πbR. Applied to a three-fold product xyu with x, y ∈ π−1R and
u ∈ ω = π2E ⊆ π2R, this multiplicativity implies that

π−1R⊗E0 π−1R⊗E0 ω
mult⊗id−−−−→ π−2R⊗E0 ω ≈ π0R

is a map of Γ-modules. Thus, we obtain a functor

π? : hR̂ → Ring?Γ, π?R = {π0R, π−1R}
from K(h)-local commutative E-algebras to the category of Z/2-graded Γ-rings. Furthermore,
π?R satisfies the Frobenius congruence, which just means that the even degree part π0R
satisfies the Frobenius congruence as noted above. (That is, “Frobenius congruence” does
not impose a condition on odd degree.)

5.10. Square-zero extension rings. Let nul ∈ Mod?Γ denote the Z/2-graded Γ-module
{nul, 0}, where nul ∈ ModΓ is the null module of §4.14. The evident functor

nul⊗− : ModE? → Mod?Γ

is fully faithful.
Given an E-module M , we may form the square-zero extension E oM , which is an

augmented commutative E-algebra with “trivial” multiplication on the augmentation fiber
M . We have that

Ker[π?(E oM)→ π?E] ≈ nul⊗ π?M
as Z/2-graded Γ-modules.

5.11. The monad T. The functor π? : R̂ → Ring?Γ described above lifts even further to a
functor

π? : R̂ → T ,
where T is the category of Z/2-graded T-algebras, where T is a certain monad on Z/2-graded
π0E-modules, as mentioned in §2.3, and which is analyzed at inordinate length in [Rez09],
and the reader is referred there for more information.

In brief, a T-algebra is a Z/2-graded Γ-ring equipped with an additional non-additive
operation which “witnesses” the Frobenius congruence. Theorem A of [Rez09] asserts that a
p-torsion free Z/2-graded Γ-ring B admits the structure of a T-algebra (necessarily uniquely)
if and only if B satisfies the Frobenius congruence.
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In fact, the above functor factors through a full subcategory

π? : R̂ → T̂
of analytically complete objects. We’ll say more about this later.

5.12. Abelian group objects. Let TE? denote the slice category, whose objects are objects
of T equipped with an augmentation to E? = π?E. We write ab TE? for the category of
abelian group objects in TE? . It is easy to see that an object f : B → E? of TE? admits an

abelian group structure if and only if the augmentation ideal B = Ker f is such that B
2

= 0,
and that if such an abelian groups structure exists, it is unique. Thus ab TE? is equivalent to
the full subcategory of objects in TE? with square-zero augmentation ideal.

Any abelian group object B ∈ ab TE? has an underlying Z/2-graded Γ-module B, giving
a forgetful functor U : ab TE? → Mod?Γ. This forgetful functor actually lands in the full
subcategory (Mod?Γ) 1

2
Ft ⊂ Mod?Γ of 1

2
-Frobenius-trivial modules (5.7); this is an immediate

consequence of the Frobenius congruence for T-algebras, applied to a square-zero augmentation
ideal.

The category of abelian group objects turns out to be equivalent to the category of
Z/2-graded Γ-modules, but not via the forgetful functor.

5.13. Proposition. There exists an equivalence of categories S : Mod?Γ → ab TE? and a
natural isomorphism between the composition of

Mod?Γ
S−→
∼

ab TE?
U−→ Mod?Γ

and the endofuntor ω1/2 ⊗− : Mod?Γ → Mod?Γ.

Sometimes we will abuse notation and write “ω−1/2 ⊗M” for S−1(M), where M ∈ ab TE? .
When the underlying E?-module of M is p-torsionfree, this notation is in fact unambiguous
by (5.8), since U(M) is 1

2
-Frobenius trivial

We note that both Mod?Γ ≈ Modeven
Γ ×Mododd

Γ and ab TE? ≈ ab T even
E?
× ab T odd

E?
can be

separated into purely even and odd components. The functor ω1/2 ⊗− : Modeven
Γ → Mododd

Γ

is an equivalence by construction, and thus we obtain an equivalence ω1/2 ⊗ S : Modeven
Γ →

ab T even
E?

whose composite with the forgetful functor U : ab T even
E?
→ Modeven

Γ is isomorphic to
ω ⊗−. If M ∈ ab T even

E?
has p-torsion free underlying E?-module, we will abuse notation and

write “ω−1 ⊗M” for the corresponding object of Modeven
Γ .

6. Dependence on the formal group

All the structure we have discussed so far depends on a choice G0/k of formal group of
height h ≥ 1 over a perfect field k of characteristic p. In this section we say a bit how the
stucture varies as we change the formal group.

6.1. The category of height h formal groups. Let FmlGph denote the category whose
objects are formal groups G0/k of height h over a perfect field k of characteristic p, and
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whose morphisms (j, γ) : G′0/k
′ → G0/k are commutative squares

G′0
γ

//

��

G0

��

Spec k′
Spec j

// Spec k

such that the induced map γ̃ : G′0 → j∗G0 to the pullback of G0 along j : k → k′ is an
isomorphism of formal groups over k′.

The Hopkins-Miller theorem asserts that Morava E-theory is realized in an essentially
unique way as a functor of (∞, 1)-categories FmlGph → {Commutative S-algebra}, sending
G0/k to EG0/k.

6.2. Dependence of Def. It is immediate that a morphism (j, γ) : G′0/k
′ → G0/k induces

functors on deformation categories of the form (j, γ)∗ : DefG′0/k′(R)→ DefG0/k(R), which on
objects send (G, i, α) to (G, i ◦ j, i∗γ̃ ◦ α). These functors are represented by maps of affine
graded-category schemes, so that in particular there are induced maps of rings

(j, γ)∗ : Ar,G0/k → Ar,G′0/k′

which commute with the structure maps s, t, µ of the graded-category scheme. Furthermore,
the induced maps

A0,G′0/k
′ ⊗A0,G0/k

sAr,G0/k → Ar,G′0/k′

are isomorphisms for all r.
There are special cases of special interest: extension of scalars, and automorphisms.
Extension of scalars. Suppose given G0/k, and let G′0 = (G0)k′ be the base change along

an inclusion k ⊂ k′. Then Ar,G′0/k′ ≈Wk′⊗Wk Ar,G0/k, and the structure maps s, t, µ are also
obtained by base change; for instance, s and t for G′0/k

′ are given by

id⊗s : Wk′ ⊗Wk A0,G0/k →Wk′ ⊗Wk Ar,G0/k, φ̃r ⊗ t : Wk′ ⊗Wk A0,G0/k →Wk′ ⊗Wk Ar,G0/k,

where φ̃ : Wk′ → Wk′ is the lift of the pth power map φ : k′ → k′. The evident map
G′0/k

′ → G0/k in FmlGph corresponds to the evident inclusions of rings Ar,G0/k → Ar,G′0/k′ .

Automorphisms. Fix a height h formal group G0/Fp; in this context, it is usual to take G0

to be the Honda formal group, although we won’t assume this. Define

G = FmlGph(G0/Fp, G0/Fp).
There is an associated group extension

1→ S→ G→ Gal(Fp/Fp)→ 1,

where the projection sends (σ, γ) to σ ∈ Gal(Fp/Fp). The subgroup S is group of automor-

phisms of G0 over Fp, i.e., the Morava stabilizer group of height h. (Recall that all height h
formal groups over a separably closed field are isomorphic.)

The above extension admits a splitting, but the choice of splitting is not natural; rather
such a splitting is determined by a model for G0 over Fp . More generally, suppose given

a formal group G1/Fpr , and for any σ ∈ Gal(Fp,Fpr) write ισ : (G1)Fp → (G1)Fp for the

tautological map of formal schemes covering σ : SpecFp → SpecFp. Then we have a group

homomorphism Gal(Fp/Fpr) → FmlGph((G1)Fp , (G1)Fp), defined by σ 7−→ (σ, ισ). Then a
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choice of isomorphism f : (G1)Fp → G0 of formal groups over Fp deterimes a homomorphism
s of the form

Gal(Fp/Fp) ⊇ Gal(Fp/Fpr)
s−→ G,

by sending σ 7−→ (σ, fισf
−1). The map s is a “partial section”, in the sense that the composite

Gal(Fp/Fpr)
s−→ G → Gal(Fp/Fp) is the standard inclusion. The construction (G1, f) 7→ s

describes a bijection between the set of Fpr-isomorphism classes of height h formal groups

over Fpr , and the set of S-conjugacy classes of partial sections s : Gal(Fp/Fpr) → G (see
[Frö68, §III.3]; a continuous section s up to conjugacy is the same thing as an element of the
non-abelian cohomology H1(Gal(Fp/Fpr),S).)

The group G acts on the categories DefG0/Fp(R), and therefore acts on the rings Ar,G0/Fp ,
compatibly with the structure maps s, t, µ. The action of G on A0,G0/Fp is the usual action
of the automorphisms of a formal group on the Lubin-Tate moduli space. The action of G
on Ar,G0/Fp is compatible with its action on the cohomology of symmetric groups, via the

quotient map E0BΣpr → E0BΣpr/I ≈ Ar,G0/Fp of Strickland’s theorem.

6.3. Dependence of ModΓ. For each object G0/k of FmlGph we have a category ModΓG0/k

of Γ-modules. Given a morphism (j, γ) : G′0/k
′ → G0/k in FmlGph, there is an evident functor

(j, γ)∗ : ModΓG0/k
→ ModΓG′0/k

′ . Explicitly, this functor sends (M, {Pr}) to (M ′, {P ′r}), where

M ′ = A0,G′0/k
′ ⊗A0,G′0

M, P ′r = A0,G′0/k
′ ⊗A0,G0/k

Pr.

These constructions fit together to define a pseudofunctor ModΓ : FmlGph → Cat.
In particular, if G = FmlGph(G0/Fp, G0/Fp), then we obtain an “action” of G on the

category ModΓ = ModΓG0/Fp
. A G-equivariant Γ-module is a Γ-module M together with

for each g ∈ G a map αg : g∗M →M of Γ-modules, such that g∗(αh) ◦ αg = αhg.
It is straightforward to show that a G-equivariant Γ-module M is the same thing as a

Γ-module (M, {Pr}), together with an action of G on the abelian group M , such that the A0-
module structure map A0 ⊗M →M and the Γ-module structure maps Pr : M → Ar

s⊗A0 M
are G-equivariant, using the evident G-action on the Ar.

We note that the usual G-action on E-cohomology gives OGuniv
≈ E0CP∞ its tautological

G-equivariant Γ-ring structure, and thus gives ω ≈ Ẽ0S2 its tautological G-equivariant
Γ-module structure.

7. The structure of Γ-modules

7.1. Γ is quadratic. The following result says that most of the rings Ar are superfluous for
describing the category of Γ-modules; a Γ-module structure is determined by the map P1,
subject to a condition involving the ring A2.

7.2. Proposition. Let M be an A0-module, and let P : M → A1
s⊗A0 M be a map of A0-

modules (with the target module structure defined using t1 : A0 → A1). There exists a dotted
arrow in

M
P

//

��

A1
s⊗A0 M

id⊗P
��

A2
s⊗A0 M

µ⊗id
// A1

s⊗A0

tA1
s⊗A0 M
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making the diagram commute if and only if there exists a Γ-module structure {Pr}r≥0 on M
such that P1 = P ; furthermore, the Γ-module structure is unique if it exists.

We will prove this below.

7.3. The Koszul complex. Let M and N be Γ-modules. We define the Koszul complex
C•(M,N) as follows. Below we write “⊗” as a shorthand for “s⊗A0

t”. For each q ≥ 0, let Bq

denote the image of
q−2⊕
i=0

A⊗i1 ⊗ A2 ⊗ A⊗q−i−2
1

(id⊗µ⊗id)−−−−−−→ A⊗q1

inside A⊗q1 = A1
s⊗A0

t · · · s⊗A0

tA1, and let

Dq = A⊗q1 /Bq.

We can regard Dq as both a right A0-module (by A0
s−→ A1

rightmost factor−−−−−−−−−→ A⊗q1 → Dq) and

a left A0-module (by A0
t−→ A1

leftmost factor−−−−−−−−→ A⊗q1 → Dq); these module structures commute.
The induced quotient maps

× : Dp ⊗A0 Dq → Dp+q

give
⊕

Dq the structure of an associative ring. In particular, since D1 = A1, there are maps

A1
s⊗A0 Dq

×−→ Dq+1, Dq ⊗A0

tA1
×−→ Dq+1.

Set
Cq(M,N)

def
= HomA0(M,Dq ⊗A0 N),

with coboundary operator dq : Cq(M,N)→ Cq+1(M,N) given on f : M → Dq ⊗A0 N by

dqf = (idDq ×PN) ◦ f − (−1)q(idA1 ×f) ◦ PM .
That this defines a cochain complex follows from the fact that (idA1 ×PM) ◦ PM = 0 for any
Γ-module M .

7.4. Proposition. If M is projective as an A0-module, then

HqC•(M,N) ≈ ExtqΓ(M,N).

Furthermore, Dq ≈ 0 for q > h, and thus for A0-projective M we have ExtqΓ(M,N) = 0 for
q > h.

We give a proof below.

7.5. Duality for bimodules. Let X be an A0-bimodule. The “right-dual” of a bimodule
X is

X∗
def
= Homright

A0
(X,A0),

the group of right-A0-module homomorphisms. Given a, b ∈ A0 and f ∈ X∗, define (a · f ·
b)(x)

def
= a(f(bx)) = f(bxa). Because A0 is commutative, a·f ·b ∈ X∗, and it is straightforward

to check that this operation makes X∗ into an A0-bimodule. Furthermore, the evaluation
map

evX : X∗ ⊗A0 X → A0, f ⊗ x 7→ f(x)

becomes a well-defined map of A0-bimodules.
We use the evaluation map to define for A0-modules M,N an abelian group homomorphism

αX : Homleft
A0

(M,X ⊗A0 N)→ Homleft
A0

(X∗ ⊗A0 M,N),



22 CHARLES REZK

sending f : M → X ⊗N to α(f) = (evX ⊗ idN) ◦ (idX∗ ⊗f). This map is an isomorphism of
bimodules when X is finitely generated and free as a right A0-module. Similarly, we have
bimodule homomorphisms

βk : X∗k ⊗A0 · · · ⊗A0 X
∗
1 → (X1 ⊗A0 · · · ⊗A0 Xk)

∗,

defined by

(fk ⊗ · · · ⊗ f1) 7→
(
x1 ⊗ · · · ⊗ xk 7→ fk(fk−1(· · · f2(f1(x1)x2) · · ·xk−1)xk)

)
which become isomorphisms when the Xi are finitely generated and free as right A0-modules.
We note that the βks are compatible with associativity in the evident way, e.g., βk ◦ (βi1 ⊗
· · · ⊗ βik) = β∑ ij , and the βks are compatible with α, in the sense that the map

Homleft
A0

(M,X1 ⊗ · · · ⊗Xk ⊗N)→ Homleft
A0

(X∗k ⊗ · · · ⊗X∗1 ⊗M,N)

obtained by k applications of αXi coincides with Hom(βk ⊗ id, id) ◦ αX1⊗···⊗Xk .
Finally, we note that there is a “left-dual” X 7→ X? = Homleft

A0
(X,A0) which satisfies

analogous properties, and which behaves nicely on X which are finitely and free as left
A0-modules. There are evident maps X → (X∗)? and Y → (Y ?)∗, which are isomorphisms if
X (resp. Y ) are finitely generated and free as right (resp. left) A0-modules.

7.6. Proofs. Recall (§4.3) that Γ-modules are in fact modules over the graded ring Γ, which
is Koszul by [Rez11]. Thus, for any Γ-module M we obtain a Koszul complex [Rez11, Prop.
4.8], i.e., an augmented complex of Γ-modules K•(M)→M which in degree q is given by

Kq(M) = Γ⊗A0 C[q]⊗A0 M.

The A0-bimodules C[q] = HqB(A0,Γ, A0) ≈ TorΓ
q (A0, A0), the homology of the reduced

normalized bar construction of Γ. Explicitly, C[q] is the kernel of

((−1)i id⊗i⊗µ⊗ id⊗q−i−2) : Γ[1]⊗q →
q−2⊕
i=1

Γ[1]⊗i ⊗ Γ[2]⊗ Γ[1]⊗q−i−2,

where µ : Γ[1]⊗ Γ[1]→ Γ[2] is multiplication.
The bimodules C[q] are finitely generated and free as left A0-modules, by [Rez11, Prop.

4.6], and the fact that the ranks of the Γ[k] as free left A0-modules are known from [Str98],
so that we have the identity of Poincaré series∑

m

rank Γ[m] · Tm =

(h−1∏
j=0

(1− pj−1T )

)−1

,

and hence ∑
m

rankC[m] · Tm =

(∑
m

rank Γ[m] · (−T )m
)−1

=
h−1∏
j=0

(1 + pj−1T ).

From this we see that C[q] ≈ 0 for q > h.
The boundary map of K•(M) is obtained as the d1 of the spectral sequence associated to

a filtration of the bar complex B(Γ,Γ,M) as described in [Rez11, §4.7]. An explicit formula
for the boundary map can be read off from this, and it is given as follows. There are evident
“inclusion” maps

` : C[q]→ Γ[1]⊗ C[q − 1], r : C[q]→ C[q − 1]⊗ Γ[1],



POWER OPERATIONS IN MORAVA E-THEORY 23

coming from the inclusion C[q] ⊆ Γ[1]⊗q. The boundary operator

dq : Γ⊗A0 C[q + 1]⊗A0 M → Γ⊗A0 C[q]⊗A0 M

is then given by

(mult⊗ idC[q]⊗ idM) ◦ (idΓ⊗`⊗ idM)− (−1)q(idΓ⊗ idC[q]⊗act) ◦ (idΓ⊗r ⊗ idM),

where mult : Γ ⊗ Γ[1] → Γ and act : Γ[1] ⊗M → M are the evident maps. It follows by
[Rez11, Prop. 4.8] that if M is a flat A0-module, then K•(M)→M is a quasi-isomorphism.
In particular, if M is A0-projective, then K•(M) is a projective Γ-module resolution of M .

Proof of (7.4). The isomorphism of the proposition amounts to the statement that there is
an isomorphism of complexes

HomΓ(K•(M), N) ≈ C•(M,N).

The verification of this is entirely routine, using the identification Γ[q] ≈ A∗q and the fact that
the product maps Γ[p]⊗ Γ[q]→ Γ[p+ q] are dual to the coproduct maps Ap+q → Aq ⊗ Ap.
From this we obtain an evident isomorphism C[q] ≈ D∗q , and thus

HomΓ(Kq(M), N) = HomA0(C[q]⊗M,N) ≈ HomA0(M,Dq ⊗N) ≈ Cq(M,N).

The identification of the coboundary maps is straightforward. �

Proof of (7.2). In [Rez11] it is proved that Γ is Koszul, and in particular that it is quadratic
[Rez11, Prop. 4.10]. That is, Γ is generated as a ring over Γ[0] = A0 by Γ[1] = HomA0(sA1, A0),

with all relations generated by the A0-sub-bimodule Q = Ker(Γ[1] ⊗ Γ[1]
mult−−→ Γ[2]) of

Γ[1]⊗A0 Γ[1].
The statement of the proposition is a direct translation of these facts, together with the

observation that the arguments of [Rez11] show that Q is a summand of Γ[1]⊗ Γ[1] as an
A0-module. Taking duals, this implies that as a map of A0-modules, µ : A2 → A1

s⊗A0

tA1

is split injective; therefore, µ⊗ idM is injective for any A0-module M . This shows that the
dotted arrow in the proposition is unique if it exists. �

8. The height 1 case

Suppose G0/k is a formal group of height h = 1. We describe the nature of the theory in
this case.

8.1. The affine graded-category scheme {Ar} for height 1. We have the following.

• A0 = Wk.
• For each r ≥ 0, the map s : A0 → Ak is an isomorphism. That is, any deformation of
G0 has a unique subgroup of rank pr, corresponding to the kernel of pr : G0 → G0.
• Identify Ar with A0 = Wk using the isomorphism s. Then t : A0 → Ar is identified

with the lift φ̃r : Wk →Wk of the prth power map on k.
• The maps µ : Ak+` → Ak

s⊗A0

tA` are uniquely determined by the above and the
identities µ ◦ s = id⊗s and µ ◦ t = t⊗ id.
• The map Ψ: A0 → A0 coincides with the map φ̃ : Wk →Wk.
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8.2. Γ-modules for height 1. By what we have just observed, we see that a Γ-module is
precisely a a Wk-module M equipped with a Wk-module map

PM : M → ΨM.

That is, PM is Ψ-linear, so PM(αm) = Ψ(α)m for α ∈Wk and m ∈M .
In fact, PM = P1 coincides with the operation ΨM of (4.15).

8.3. Koszul complex for height 1. For Γ-modules M and N , the Koszul complex C•(M,N)
(§7.3) takes the form

HomWk(M,N)
d0−→ HomWk(M, ΨN)

γ 7−→ PN ◦ γ − γ ◦ PM .
For example, if M and N are rank one A0-modules with bases x of M and y of N , so that
P (x) = αx, P (y) = βy for α, β ∈Wk, the complex becomes isomorphic to

Wk
d0−→Wk

f 7−→ φ̃(f)β − fα.

8.4. Invariant 1-forms for height 1. Now let f : s∗Guniv → t∗Guniv be the universal
example of a deformation of Frob, which is defined over A1. There exists a commutative
diagram of homomorphisms of formal groups over A1 of the form

s∗Guniv
f

//

[p] %%

t∗Guniv

s∗Guniv

ψ

∼
99

in which ψ is an isomorphism of formal groups. Modulo the maximal ideal in A1, this becomes
the commutative diagram

G0
Frob

//

[p]   

φ∗G0

G0

π∗(ψ)=ψ0

∼
<<

Pick a generator u ∈ ω of the invariant 1-forms on Guniv, and consider the pullbacks
s∗u ∈ ωs∗Guniv

and t∗u ∈ ωt∗Guniv
. If we write

f ∗(t∗u) = b(s∗u) for some b ∈ A1 = Wk, ψ∗(t∗u) = λ(s∗u) for some λ ∈ A×1 = (Wk)×,

then the identity f = ψ ◦ [p] implies that b = pλ.
Thus the Γ-module ω of invariant 1-forms is isomorphic to the free Wpk-module on one

generator u with P (u) = bu = (pλ)u, where λ ∈ (Wpk)×.
In the special case that k = Fp, then s = t = idZp , and hence ψ = [λ] : Guniv → Guniv, and

thus ψ0 = [λ] : G0 → G0. Here are some examples.

• If Guniv is multiplicative group over Zp, then [p] is a deformation of Frobenius, λ = 1,
and P (u) = pu.
• If p is odd and Guniv is the formal group over Zp given by the group law x[+]y =

(x+ y)/(1− xy), then [(−1)(p−1)/2p] is a deformation of Frobenius, λ = (−1)(p−1)/2,
and P (u) = (−1)(p−1)/2pu.
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8.5. On the element λ. The definition of λ depends on both the formal group G0/k and

the choice of generator u ∈ ω. Replacing u with αu for α ∈ A×0 changes λ to λφ̃(α)/α, and
thus we get a well-defined element 〈λ〉 of

H(k) = Cok

[
(Wk)×

α 7→φ̃(α)/α−−−−−−→ (Wk)×
]
.

The element 〈λ〉 ∈ H(k) is an invariant of the isomorphism class of G0 over k.

Over k = Fp, all height 1 formal groups are isomorphic to Ĝm, and so in this case we can
choose a basis u ∈ ω such that λ = 1.

Over k = Fpr , Hilbert’s Satz 90 applied to the unramified extension Wk ⊗Q/Qp gives an

isomorphism H(k) ≈ Z×p , defined by [λ] 7→ Nm(λ) =
∏r−1

k=0 φ̃
k(λ). Explicitly, β = Nm(λ) ∈

Z×p is the unique map fitting in the commutative diagram

G0
Frobr

//

[pr]   

(φr)∗G0 = G0

G0

[β]

∼
88

The assignment G0/k 7−→ β ∈ Z×p is a complete isomorphism invariant of height 1 formal
groups over Fpr . See [Frö68, §III.3 Thm. 2] and the surrounding discussion. The formal

multiplicative group Ĝm/Fpr has trivial invariant.

8.6. Sample calculation. Suppose that G0/k is a height 1-formal group over a subfield k
of Fp. Let det = (Wk)v denote the Γ-module defined by P (v) = pv.

8.7. Proposition. We have

ExtsΓ(ω−1 ⊗ det, ωm) ≈ 0 if s 6= 0, 1, or if m 6= 0.

HomΓ(ω−1 ⊗ det,1) ≈

{
Zp if G0 ≈ Ĝm over k,

0 otherwise.

Ext1
Γ(ω−1 ⊗ det,1) ≈

{
Zp if k finite and G0 ≈ Ĝm over k,

0 otherwise.

Proof. Using §8.3, the complex for a given m is

Wk
d0−→Wk

f 7−→ λmpm φ̃(f)− λ−1f.

For m ≥ 1, the boundary map d0 is an isomorphism, since modulo p it has the form
f 7→ −λ−1f , and λ is a unit. In the case m = 0, the boundary map d0 has non-trivial kernel
if and only if λ = α/φ̃(α) for some α ∈ (Wk)×, i.e., if [λ] = 0 in H(k), which as noted above

§8.5 happens if and only if G0 ≈ Ĝm over k. �

The above calculation is input for a spectral sequence computing the space of commu-
tative S-algebra maps Σ∞+ Z→ E; the π2 of this space is equal to the homotopy classes of
commutative S-algebra maps Σ∞+K(Z, 2)→ E. The dependence on G0 being isomorphic to
the multiplicative group is a reflection of Snaith’s theorem (that the spectrum of complex
K-theory is obtained by inverting the Bott class in Σ∞+K(Z, 2)).
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9. Supersingular elliptic curves and the height 2 case

Let C0 be a supersingular elliptic curve over a perfect field k. Thus, the formal completion

Ĉ0 of C0 at its identity element is a formal group of height 2 over k.
According to the theorem of Serre-Tate, the deformation theory of a supersingular elliptic

curve is precisely the same as the deformation theory of its formal group. Thus, we may
define a category DefC0/k(R) of deformations of C0 to a complete local ring R, exactly as
we did for the formal group G0. The functor DefC0/k(R) → DefĈ0/k

(R) to the category of

deformations of the formal group Ĉ0, defined by (C, i, α) 7→ (Ĉ, i, α̂), is an equivalence of
categories; this is the content of the Serre-Tate theorem applied to a supersingular elliptic
curve.

We will now assume that our formal group G0 = Ĉ0 is the formal group of a supersingular
curve. Thus, any deformation (G, i, α) of G0 is the formal completion (uniquely up to
canonical isomorphism) of a deformation of C0, and any morphism f : G → G′ in Defr(R)
extends (uniquely up to canonicaly isomorphism) to an isogeny f : C → C ′ between elliptic
curves of degree pr, which itself a deformation of Frobr : C0 → (φr)∗C0.

9.1. Dual isogenies. For any isogeny of elliptic curves f : C → C ′ of rank pr, there is an

associated dual isogeny f̂ : C ′ → C, with the property that f̂f = ff̂ = [pr]. Observe that

the dual of f̂ is f again.

If f : (C, i, α) → (C ′, i′, α′) is a deformation of Frob1, then the identity [p] = f̂f gives a
commutative diagram in the deformation category of the form

(C, i, α′)
f̂

((

(C, i, α)

f
99

[p]
// (C, i ◦ φ2, α ◦ ψ)

Thus we obtain a ring homomorphism w : A1 → A1 representing the operation(
f : (G, i, α)→ (C, i′, α′)

)
7→
(
f̂ : (C ′, i′, α′)→ (C, i ◦ φ2, α ◦ ψ)

)
,

and which fits into a commutative diagram

A0
s
//

t   

A1

w

��

A0
t

oo

sΨ~~

A1

Observe that w2 : A1 → A1 is not generally the identity map, but rather we have that
w2s = sΨ and w2t = tΨ. In particular, w interacts in a complicated way with the A0-module
structures on A1, which can be represented by the notation w : tA1

s → sΨA1
t.

We will use the following notation in the remainder of the paper. If f : M → tA1
s⊗A0 N

is an A0-module homomorphism, we will write w × f : tA1
s⊗A0 M →

sΨA1
s⊗A0 N for the

composite
tA1

s⊗A0 M
w⊗f−−→ sΨA1

t⊗A0

tA1
s⊗A0 N

multiply−−−−→ sΨA1
s⊗A0 N.

The resulting map is a map of left A0-modules, using the indicated module structures. We
note that w × id : tA1

s⊗A0

tA1
s → sΨA1

s is a ring homomorphism.
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The identity f̂f = [p] gives rise to a commutative square of ring homomorphisms

(9.2)

A2
µ
//

[p]

��

A1
s⊗A0

tA1

w×id

��

A0 s
// A1

9.3. Proposition. The diagram (9.2) is a pullback square of rings. Furthermore, for any
A0-module M , the induced diagram

tA2
s⊗A0 M

µ⊗id
//

[p]⊗id
��

tA1
s⊗A0

tA1
s⊗A0 M

(w×id)⊗id
��

ΨA0 ⊗A0 M s⊗id
// sΨA1

s⊗A0 M

is a pullback square of modules. The induced map

D2 ⊗A0 M → (A1/s(A0))⊗A0 M

is an isomorphism, where D2 = Cok[µ : A2 → A1
s⊗A0

tA1].

Proof. This is essentially the proof of part (4) of [Rez12, Thm. 1.6] given in §1.7 of that
paper. �

9.4. Proposition. Let M be an A0-module, and let P : M → A1
s⊗A0 M be a map of

A0-modules. There exists a dotted arrow in

M
P

//

��

tA1
s⊗A0 M

idA1
⊗P

��
tA1

s⊗A0

tA1
s⊗A0 M

w×idA1⊗M
��

ΨA0 ⊗A0 M
s⊗id

// sΨA1
s⊗A0 M

making the diagram commute if and only if there exists a Γ-module structure {Pr}r≥0 on M
such that P1 = P . This Γ-module structure is unique if it exists. If it does exist, then the
dotted arrow is precisely the operator ΨM : M →M .

Proof. Immediate from (9.3) and (7.2). �

We can write the identity of the proposition in the form s⊗ΨM = (w × PM) ◦ PM .

Thus, we arrive at the following. If G0 = Ĉ0 is the completion of a supersingular curve,
then a Γ-module amounts to a pair (M,P ), where M is an A0-module, P : M → tA1

s⊗A0 M
is an A0-module map, and (w × P ) ◦ P : M → A1

s⊗A0 M lands in the image of s⊗ id : M =
A0 ⊗A0 M → A1

s⊗A0 M .
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9.5. The Koszul complex. In our setting, where G0 = Ĉ0, the Koszul complex has the
form

C0(M,N) = HomA0(M,N),

C1(M,N) = HomA0(M, tA1
s⊗A0 N),

C2(M,N) = HomA0(M, sΨ(A1/A0)s⊗A0 N).

The boundary maps are given by:

φ ∈ C0(M,N), d0φ : m 7→ PN(φ(m))− (id⊗φ)(PM(m)),

ψ ∈ C1(M,N), d1ψ : m 7→ (w × PN)(ψ(m)) + (w × ψ)(PM(m)).

(The formula given for d1 produces an element in A1
s⊗A0 N ; the value of (d1φ)(m) is the

projection to (A1/s(A0))s⊗A0 N .) This in fact defines a cochain complex; for φ ∈ C0(M,N)
we have

d1(d0φ)(m) = (w × PN)((d0φ)(m)) + (w × d0φ)(PM(m))

= (w × PN)(PN(φ(m)))− (w × PN)(id⊗φ)(PM(m))

+ (w × PN)(id⊗φ)(PM(m))− (id⊗φ)(w × PM)(PM(m))

= (s⊗ΨN)(φ(m))− (id⊗φ)(s⊗ΨM)(m) ∈ (s⊗ id)(N).

The last line uses the identity s⊗ΨM = (w × P ) ◦ P of (9.4).
We note that this complex can also be arranged as a semi-cosimplicial object. That is, the

cohomology of C•(M,N) is naturally isomorphic to the cohomology of the semi-cosimplicial
abelian group

HomA0(M,N)
//

//

HomA0(M, tA1
s⊗A0 N)

×
HomA0(M, ΨN)

//

//

//

HomA0(M, sΨA1
s⊗A0 N)

with coface maps given by

φ

� //

� //

(PN ◦ φ, ΨN ◦ φ)

((id⊗φ) ◦ PM , φ ◦ΨM)
(ψ, φ)

� //

� //

� //

(w × PN) ◦ ψ

(s⊗ id) ◦ φ

(w × ψ) ◦ PM

This cosimplicial object is reminiscent of one considered in [MR09] and [Beh06], which are
built using separable isogenies of elliptic curves, and which relate to stable homotopy rather
than to commutative ring spectra.

9.6. Γ-modules of rank 1. Let β ∈ A1 such that w(β)β ∈ s(A0). Then we can define
a Γ-module Lβ as follows. The underlying A0-module of Lβ is a free A0-module on one
generator x. The structure map P : Lβ → A1

s⊗A0 Lβ is defined so that P (x) = β ⊗ x; thus,
P (cx) = t(c)β ⊗ x for c ∈ A0. We verify that

(w × P )P (cx) = w(t(c)β)β ⊗ x = sΨ(c)w(β)β ⊗ x ∈ (s⊗ id)(A0 ⊗A0 M),

and thus this P defines a valid Γ-module homomorphism. In particular, note that ΨLβ(x) =
w(β)β x ∈ A0 ⊗A0 Lβ.
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Let β1, β2 ∈ A1 such that w(β1)β1, w(β2)β2 ∈ s(A0), and suppose that α ∈ A0 is such that

s(α)β1 = t(α)β2 ∈ A1.

Then we can define a Γ-module homomorphism f : Lβ1 → Lβ2 by setting f(x1) = αx2, so
that f(cx1) = cαx2 for c ∈ A0. We verify that

P (f(x1)) = P (αx2) = t(α)β2 ⊗ x2,

(id⊗f)(P (x1)) = (id⊗f)(β1 ⊗ x1) = β1 ⊗ αx2 = s(α)β1 ⊗ x2,

and thus f defines a valid Γ-module homomorphism.
We have thus done most of the work to prove the following.

9.7. Proposition.

(1) The construction β 7→ Lβ gives a bijective correspondence

{ β ∈ A1 | w(β)β ∈ s(A0) }
β ∼ t(γ)s(γ)−1β for γ ∈ A×0

←→
{

isomorphism classes of
rank one Γ-modules

}
.

(2) We have
HomΓ(Lβ1 , Lβ2) ≈ {α ∈ A0 | t(α)β2 = s(α)β1 }.

(3) We have Lβ1 ⊗Lβ2 ≈ Lβ1β2. The module Lβ is ⊗-invertible as a Γ-module if and only
if β ∈ A×1 .

In particular, every β ∈ Zp gives rise to a rank one Γ-module Lβ. We note these examples.

• 1 = L1, the unit object in the symmetric monoidal category of Γ-modules.
• det = Lp, the determinant module.
• nul = L0, the null module. Note that HomΓ(nul, nul) ≈ A0, and thus HomΓ(M,N ⊗

nul) has the structure of an A0-module.

Note that if Lβ is such that βγ = p for some (necessarily unique) γ ∈ A1, then we have an
isomorphism det = Lβ ⊗ Lγ. We may thus sometimes choose to write Lβ = L−1

γ ⊗ det, even
when the module Lγ is not ⊗-invertible as a Γ-module

The invariant 1-form module ω is an example of a rank one Γ-module which is not in
general described by an element of Zp, as we will see. If u ∈ ω is a basis, and we write
P (u) = b⊗ u with b ∈ A1, then ω ≈ Lb. Because [p] = ψ ◦Frob2 on C0 for some isomorphism
ψ : C0 → (φ2)∗C0, we have that Ψ(u) = w(b)b ⊗ u = λp ⊗ u for some λ ∈ A×0 . As a
consequence, there exists a module ω−1 ⊗ det ≈ Lλ−1w(b).

9.8. Standard supersingular curves. We say that a supersingular elliptic curve C0/k is
standard if k ⊆ Fp2 and Frob2 = [−p]. Honda-Tate theory provides a standard supersingular
elliptic curve over k = Fp for every prime p. In fact, we have the following.

9.9. Proposition. Every supersingular elliptic curve over a finite field is isomorphic (over
Fp) to a standard supersingular curve.

Proof. [BGJGP05, Lemma 3.21]. �

For a standard curve C0/k, we have that Ψ: A0,C0/k → A0,C0/k and w2 : A1,C0/k → A1,C0/k

are identity maps.

9.10. Remark. It is important here that k ⊆ Fp2 . If we extend to some larger field k′ ⊃ Fp2 ,
then neither Ψ nor w2 are identity maps. In fact, on scalars c ∈ Wpk

′ ⊆ A0 we have

Ψ(c) = φ̃2(c), where φ̃ : Wpk
′ →Wpk

′ is the lift of the pth power map on k′.
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We will now show, using the results of [Rez12], how to describe explicitly category of mod-p
Γ-modules for a standard supersingular curve, and nearly explicitly describe the category of
Γ-modules itself. (Similar results hold for curves which satisfy Frob2 = [p].)

9.11. Notation. We let C0/k be a standard supersingular curve, with k ⊆ Fp2 . Let C0 =

(C0)Fp be the base change of C0 to Fp.
We will use the following conventions when dealing with Γ-modules for C0/Fp. First, we

write Ar ⊂ Ar for the rings Ar,C0/k ⊂ Ar,C0/Fp ; recall that Ar ≈WFp ⊗Wk Ar. Likewise, we

write ω ⊂ ω for the Γ-modules of invariant 1-forms on C0 and C0.

• We identify A0 with its image under the inclusion s : A0 → A1, and similarly identify
A0 with the image of s : A0 → A1.
• For any element β ∈ A1, we write β′ for w(β) ∈ A1. This implies that for α ∈ A0, we

have t(α) = α′, and α′′ = Ψ(α).
• As a consequnce, if β ∈ A1, we have β′′ = β, and if α ∈ A0, we have α′′ = α = Ψ(α).

• For c ∈WpFp, write c(r) = (φ̃r)(c), and for f(x) =
∑
cIx

I ∈Wpk[[x1, . . . , xn]], write

f (r)(x) =
∑
c

(r)
I xI . Note that c′ = c(1).

9.12. Structure of A1. The universal deformation of C0 is defined over A0 ≈Wpk[[a]]. We
refer to any power series generator a of this ring as a deformation parameter. Thus, we
choose a deformation parameter a, and write a = s(a) ∈ A1 and a′ = t(a) ∈ A1.

9.13. Proposition. The evident map Wpk[[a, a′]]→ A1 descends to a ring isomorphism

k[[a, a′]]/
(
(ap − a′)(a− a′p)

)
≈ A1/(p).

The map can: A1 → A0/(p) classifying the canonical subgroup is given by a 7→ a, a′ 7→ ap.
The maps s, t : A0/(p)→ A1/(p) are given by s(f(a)) = f(a) and t(f(a)) = f (1)(a′).

Proof. This is a special case of Proposition 3.15 of [Rez12]. �

Now choose a basis u of the module ω of invariant 1-forms. Then P (u) = b⊗ u for some
b ∈ A1. Let b′ = w(b) ∈ A1. Since k ⊆ Fp2 and Frob2 = [−p], we must have that b′b = −p.

9.14. Proposition. The evident map Wpk[[b, b′]]/(bb′ + p)→ A1 is an isomorphism of rings.
Furthermore, there exists e ∈ A×1 and e′ = w(e) ∈ A×1 such that

b = e(a′ − ap) and b′ = e′(a− a′p).

Proof. To demonstrate the isomorphism, it suffices to do so after reducing mod p, since both
Wpk[[b, b′]]/(bb′ + p) and A1 are p-complete and p-torsion free.

An isogeny f : C → C ′ of elliptic curves of rank p factors through Frobenius if and only if
f ∗ : ωC′ → ωC is the zero map. Therefore Ker(can: A1 → A0/(p)) = (b) ⊆ A1.

On the other hand, by (9.13) the evident map k[[a, a′]]/((ap − a′)(a− a′p))→ A1/(p) is an
isomorphism of rings. The projection map A1 → A1/(p, a

p − a′) ≈ A0/(p) exactly classifies
Frobenius, and thus we must have that b = e(a′ − ap) for some unit λ ∈ A×1 . Clearly this
implies b′ = e′(a− a′p), and that k[[b, b′]]/(bb′)→ A1/(p) is an isomorphism. �
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9.15. Adapted parameters. Given a basis u for ω, we say that a deformation parameter
a ∈ A0 is adapted to u if we have

a ≡ b′ mod bA1,

where b ∈ A1 is such that P (u) = b⊗ u, and b′ = w(b), so that b′b = −p. If a is adapted to u,
then applying w to the above congruence gives

a′ ≡ b mod b′A1.

Since a ≡ a′p ≡ bp mod b′A1, it also follows that

a ≡ b′ + bp mod bA1 and a ≡ b′ + bp mod b′A1.

The ring homomorphism A1/(p)→ A1/(b)× A1/(b
′) is injective, and thus we have

a ≡ b′ + bp mod pA1

for any adapted parameter a.

9.16. Proposition. For any generator u ∈ ω, there exists a deformation parameter a ∈ A0

adapted to it.

Proof. As noted above, for an arbitrary deformation parameter a we have that b = λ(a′ − ap)
for some unit λ ∈ A×1 . Thus

b′ + bp ≡ λ′(a− a′p) ≡ λ′(a− ap2

) mod bA1.

Because s : A0/(p) → A1/(b) is an isomorphism, we may choose a ∈ A0 which projects to

λ′(a− ap2
) modulo bA1. Clearly, this a is a deformation parameter, and a ≡ b′ mod bA1, so

it is adapted. �

Now suppose that a ∈ A0 is an adapted parameter. It will be convenient to use the evident
isomorphisms A1/(b) ≈ k[[b′]] and A1/(b

′) ≈ k[[b]], with respect to which the evident ring
homomorphism A1 → A1/(b)× A1/(b

′) induces an isomorphism of rings

A1/(p) ≈ k[[b′]]×k k[[b]] ⊂ k[[b′]]× k[[b]],

identifying A1/(p) with the set of pairs of power series (g1(b′), g2(b)) such that g1(0) = g2(0).
This isomorphism sends

a 7→ (b′, bp), a′ 7→ (b′p, b),

b 7→ (0, b), b′ 7→ (b′, 0).

With respect to this isomorphism we have

s(f(a)) = (f(b′), f(bp)), t(f(a)) = (f (1)(b′p), f (1)(b)),

and
w(g1(b′), g2(b)) = (g

(1)
2 (b′), g

(1)
1 (b)).

The map A1/(p, s(A0))→ k[[b]] defined by

(g1(b′), g2(b)) 7→ g2(b)− g1(bp)

induces a bijection A1/(p, s(A0))
∼−→ b k[[b]].
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9.17. Remark. One would like to lift the congruence a ≡ b′ + bp modulo bA1 to an identity
in A1, so that a = f(b, b′) for some explicit polynomial f in b and b′. Armed with such
an identity, one would then have an explicit description of the maps s, t : A0 → A1 and
w : A1 → A1, and thus an explicit description of the category of Γ-modules. This has been
done at the prime 2 [Rez08], and at the prime 3 [Zhu12].

9.18. The Koszul complex for rank one modules. Suppose that M = Lα and N = Lβ
for some α, β ∈ A1 with α′α, β′β ∈ A0. If we write x ∈M and y ∈ N for the generators, we
have

A0
∼−→ C0(M,N) = HomA0(M,N), f 7→ (x 7→ f y),

A1
∼−→ C1(M,N) = HomA0(M, tA1

s⊗A0 N), g 7→ (x 7→ g ⊗ y),

A1/A0
∼−→ C2(M,N) = HomA0(M, sΨ(A1/sA0)s⊗A0 N), h 7→ (x 7→ h⊗ y).

With respect to these identifications, the Koszul complex of §9.5 takes the form

A0
d0−→ A1

d1−→ A1/A0

with coboundary maps

d0(f) = f ′β − fα, d1(g) = g′β + g α′.

(Verify: d1(d0(f)) = (f ′β − fα)′β + (f ′β − fα)α′ = Ψ(f)β′β − fα′α ∈ A0.)
Suppose g ∈ A1 is such that g′β + gα′ ∈ s(A0), and so corresponds to a 1-cocycle

representing a class in Ext1
Γ(Lα, Lβ). The corresponding extension 0→ Lβ → E → Lα → 0

can be constructed as follows: set E = A0y⊕A0x, with y the image of the standard generator
of Lβ, and so that x projects to the standard generator of Lα. Then the Γ-module structure
on E is defined by

P (y) = β ⊗ y, P (x) = g ⊗ y + α⊗ x.
The cocycle condition g′β + gα ∈ s(A0) is exactly the condition that E is a Γ-module. In
this case the map Ψ: E → E is given by

Ψ(y) = β′β y, Ψ(x) = (g′β + gα′) y + α′αx.

10. Calculation of Ext∗Γ(ωm, nul)

Fix a standard supersingular curve C0 over k ⊆ Fp2 . Recall that ω is the Γ-module of
invariant differentials, and that nul is the Γ-module with “trivial” Γ action, defined in §9.6.
We also use the notations introduced in §9.15.

10.1. Theorem. We have that

ExtsΓ(ωm, nul) = 0 for all m ≥ 0, s 6= 2,

and
Ext2

Γ(ωm, nul) ≈ A1/(s(A0), b′mA1).

Recall that HomΓ(nul, nul) ≈ A0, so these Ext-groups are natuarlly A0-modules.
Recall that ωm ≈ Lbm , and nul ≈ L0. The Koszul complex C•(ωm, nul) thus takes the form

A0
d0−→ A1

d1−→ A1/A0

with
d0(α) = −αbm, d1(β) = βb′m.
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That is, Extsω(ωm, nul) is the cohomology of the complex

A0
−bm−−→ A1

b′m−−→ A1/A0.

We need two facts.

(1) Multiplication by p gives an injective map A1 → A1.
(2) Multiplication by bm gives an injective map A0/(p)→ A1/(p).

Fact (1) is clear, since A1 is a free A0-module. Fact (2) follows using the identifications
A0/(p) ≈ k[[a]] and A1/(p) ≈ A1/(p, b) ×k A1/(p, b

′) ≈ k[[b′]] ×k k[[b]] described above; with
respect to these, multiplication bm is given by which we can use to identify the map with

f(a) 7−→ (f(b′)bm, f(bp)bm) =

{
(f(b′), f(bp)) if m = 0,

(0, f(bp)bm) if m ≥ 1.

In either case the map is injective. (Note that b : A1/(p) → A1/(p) is not injective, since
b′b = −p.)

10.2. Case of m = 0. In this case, the sequence A0
1−→ A1

1−→ A1/A0 is manifestly exact.
Thus Ext∗Γ(1, nul) = 0.

10.3. Case of m ≥ 1. Because p is not a zero-divisor in A1, and b′mbm = (−p)m, we have
that d0 : A0 → A1 is injective.

Now suppose g ∈ C1 = A1 is such that d1(g) = 0. That is, b′mg = f for some (necessarily
unique) f ∈ A0. Thus

bmf = bmb′mg = (−p)mg.
We claim that f/pm ∈ A0. It suffices to show that if bmf ∈ pA1, then f ∈ pA0, in which case
the claim is proved by induction on m. The statement to be proved is precisely fact (2) above.
Thus we have shown that if g ∈ C1 is a cocycle, then g = −bmk = d0(k) for some k ∈ A0.

It is now clear that Ext2
Γ(ωm, nul) ≈ A1/(s(A0), b′mA1).

11. Calculation of Ext∗Γ(det⊗ ω−1, ωm)

We fix a standard supersingular curve C0 over k ⊆ Fp2 . We write C0/Fp for its base change
to the algebraic closure. The module ω−1 ⊗ det was defined in §9.6.

11.1. Proposition. For C0 and s,m ≥ 0, we have that

ExtsΓ(ω−1 ⊗ det, ωm) ≈

{
Zp if s = 1 = m,

0 otherwise.

Recall that ExtsΓ(M,N) = HsC•(M,N) when M is projective over A0. In our case, each
Cs(M,N) is a p-complete torsion free abelian group, and the coboundary maps are Zp-module
maps. The proposition will follow once we show that

Hs(C•(ω−1 ⊗ det, ωm)⊗ Z/p) ≈

{
Z/p if s = 1 = m,

0 otherwise.

In the remainder of this section, we give the proof.
Choose a basis u ∈ ωC0 and an adapted parameter a ∈ Wpk[[a]]. We have A0 = Wpk[[a]]

and A1 = Wpk[[b, b′]]/(bb′ + p), and thus A0 = WpFp[[a]] and A1 = WpFp[[b, b′]]/(bb′ + p).
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Recall that det⊗ ω−1 ≈ L−b′ , and ωm ≈ Lbm . The Koszul complex C•(det⊗ ω−1, ωm) thus
takes the form

A0
d0−→ A1

d1−→ A1/A0

with
d0(f) = f ′bm + fb′, d1(g) = g′bm − gb.

Using the isomorphisms A1/(p) ≈ Fp[[b′]] ×Fp Fp[[b]] and A1/(p,A0) ≈ bFp[[b]], the mod p

reduced complex C•(det⊗ ω−1, ωm)⊗ Z/p has the form

Fp[[a]]
d0−→ Fp[[b′]]×Fp Fp[[b]]

d1−→ bFp[[b]]
with differentials

d0 : f(a) 7−→ (f(b′)b′, f (1)(b)bm)

d1 : (g1(b′), g2(b)) 7−→ g
(1)
1 (b)bm − g2(b)b

when m ≥ 1, and differentials

d0 : f(a) 7−→ (f (1)(b′p) + f(b′)b′, f (1)(b))

d1 : (g1(b′), g2(b)) 7−→ g
(1)
1 (b)− g2(b)b− g(1)

2 (bp)

when m = 0.

11.2. Mod p calculation, m = 0. It is clear in this case that d0 is injective, so H0(C⊗Z/p) =
0.

Suppose (g1(b′), g2(b)) ∈ Fp[[b′]]×Fp Fp[[b]] is a cocycle; i.e., g1(0) = g2(0) in Fp and g
(1)
1 (b) =

g2(b)b+ g
(1)
2 (bp) in bFp[[b]] = C2 ⊗ Z/p. We compute that

d0 : g
(−1)
2 (a) 7−→ (g2(b′p) + g

(−1)
2 (b′)b′, g2(b)) = (g1(b′), g2(b)),

whence H1(C ⊗ Z/p) = 0.
Let h(b) ∈ bFp[[b]]. We compute that

d1 : (h(−1)(b′), 0) 7−→ h(b),

whence H2(C ⊗ Z/p) = 0.

11.3. Mod p calculation, m = 1. It is clear in this case that d0 is injective, so H0(C⊗Z/p) =
0.

Suppose (g1(b′), g2(b)) ∈ Fp[[b′]]×Fp Fp[[b]] = C1⊗Z/p is a cocycle. That is, g1(0) = g2(0) and

g
(1)
1 (b)b = g2(b)b in bFp[[b]] = C2⊗Z/p, which implies that g2(b) = g

(1)
1 (b). If g1(0) = g2(0) = 0,

then we compute

d0 : g1(a)/a 7−→ (g1(b′), g
(1)
1 (b)).

Thus, every 1-cocycle in C1⊗Z/p is cohomologous to one of the form (λ, λ) with λ ∈ Fp, and
such an element is a cocycle if and only if λ = λp, i.e., if λ ∈ Fp.

ThusH1C⊗Z/p ≈ Z/p. Note that this argument has constructed an explicit homomorphism

ρ : Ext1
Γ(ω−1 ⊗ det, ω)→ Fp,

computed on cocycles by ρ((g(b′), g(1)(b)) = g(0); see §11.5 for a geometric interpretation of
ρ.
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Let h(b) ∈ bFp[[b]] ≈ C2 ⊗ Z/p. If h(b) ∈ b2Fp, then we compute that

d1 : (0,−h(b)/b) 7−→ h(b).

Thus, every 2-cochain in C2 ⊗ Z/p is cohomologous to one of the form µb with µ ∈ Fp. Since

for λ ∈ Fp we have
d1 : (λ, λ) 7−→ (λp − λ)b.

We can choose λ ∈ Fp so that λp − λ = µ, and hence H2(C ⊗ Z/2) = 0.

11.4. Mod p calculation, m ≥ 2. This is similar to (but easier than) the m = 1 case.
Clearly d0 is injective, so H0(C ⊗ Z/p) = 0.

If (g1(b
′), g2(b)) ∈ C1 ⊗ Z/p is a cocycle, then we have g2(b) = g

(1)
1 (b)bm−1. This implies

that g1(0) = g2(0) = 0. Thus

d0 : g1(a)/a 7−→ (g
(1)
1 (b′), g

(1)
1 (b)bm−1),

showing that H1(C ⊗ Z/p) = 0.
If h(b) ∈ bFp[[b]] ≈ C2 ⊗ Z/p is such that h(b) ∈ b2Fp[[b]], then

d1 : (0,−h(b)/b) 7−→ h(b).

In addition, for µ ∈ Fp we have

d1 : (µ,−µ+ µpbm−1) 7−→ µpbm − (−µ+ µpbm−1)b = µb.

Thus H2(C ⊗ Z/p) = 0.

11.5. More on Ext1
Γ(ω−1 ⊗ det, ω). According to our identification of the Koszul complex,

a 1-cocycle in C1 = C1(ω−1⊗ det, ω) is a homomorphism g : det⊗ ω−1 → tA1
s⊗A0

ω, given by

g(u−1v) = λ⊗ u, λ ∈ A1 such that (λ′ − λ)b ∈ s(A0),

where u ∈ ω is our chosen basis, v ∈ det is the standard basis, and P (u) = b⊗u. In particular,
λ ∈ A1 such that λ = λ′ gives an example of a 1-cocycle. In particular, any λ ∈ Zp ⊆ A1

represents a 1-cocycle, and according to our calculation these cocycles represent all elements
in Ext1.

Note that the 1-cocycles we have just described depend on a choice of basis u for ωC0 ⊂ ωC0
.

The dependence of the cohomology class of g on the choice of basis element u seems difficult
to unravel; it is hard to determine when explicitly given cocycles are cohomologous. However,
modulo p we can say something.

Consider an extension 0 → N → E → M → 0 of Γ-modules. Evaluating this extension
at the Frobenius endomorphism Frob: C0 → φ∗C0 of C0/Fp gives a commuting diagram of

Fp-vector spaces

0 // Fpφπ0⊗A0
N //

N(FrobC0
)

��

Fpφπ0⊗A0
E //

E(FrobC0
)

��

Fpφπ0⊗A0
M //

M(FrobC0
)

��

0

0 // Fpπ0⊗A0
N // Fpπ0⊗A0

E // Fpπ0⊗A0
M // 0

where π0 : A1 → Fp classifies C0/Fp together with its unique p-subgroup, and φ is the pth
power map. (We are implicitly using the identification of Γ-modules with p-isogeny modules,
as described in §4.5.)



36 CHARLES REZK

In the case that both N(FrobC0
) = 0 and M(FrobC0

) = 0, then E(FrobC0
) factors uniquely

through an Fp-vector space homomorphism

ρ(E) : Fpφπ0⊗A0
M → Fpπ0⊗A0

N.

If such an extension is classified by a 1-cocycle g : M → tA1
s⊗A0

N , then ρ(E) is precisely
the unique map fitting in the square

M
g

//

φπ0⊗id
��

tA1
s⊗A0

N

π0⊗id
��

Fpφπ0⊗A0 M ρ(E)
// Fpπ0⊗A0

N.

In our case that M = ω ⊗ det−1 and N = ω, this invariant E 7→ ρ(E) coincides with the
explicit homomorphism ρ : Ext1

Γ(ω−1 ⊗ det, ω)→ Fp described in §11.3.
For an elliptic curve C/S, there is a canonical extension of locally free coherent sheaves

over S of the form

0→ H0(Ω1
C/S)→ H1

dR(C/S)→ H1(OC/S)→ 0

associated to the “algebraic Hodge to de Rham spectral sequence”, with H0(Ω1
C/S) ≈ ωC/S

and H1(OC/S) ≈ ω−1
C/S (see [Kat73, §A1.2]). Since the spectral sequence is functorial with

respect to maps of schemes over S, and hence with respect to isogenies, we may apply it to
the case of the universal deformation of a supersingular curve C0/k to obtain a canonical
Hodge extension

0→ ω → H1
dR(Cuniv/ SpecA0)→ ω−1 ⊗ det→ 0

of Γ-modules. The Γ-module structure on H1(OC/S) can be deduced from the Serre du-
ality map H0(Ω1

C/S) ⊗ H1(OC/S) → H1(Ω1
C/S) and the observation that as a Γ-module,

H1(Ω1
Cuniv/SpecA0

) ≈ H2
dR(Cuniv/ SpecA0) ≈ det.

According to [Kat77, Lemma 1], for an elliptic curve C/S over an Fp-scheme S, the image
of Frob∗ : H1

dR(φ∗C/S)→ H1
dR(C/S) is locally free of rank one, with cokernel also locally free

of rank one. It follows that specialization of the “Hodge extension” at the Frobenius isogeny
of C0/k gives a non-trivial invariant ρ ∈ Z/p. Thus, we may conclude that the “Hodge
extension” presents a generator of Ext1

Γ(ω−1 ⊗ det, ω).

11.6. A calculation of Γ-ring maps. It is convenient to give in this section a computation
of the set of T-algebra maps

π?(E ∧ Σ∞+ Z)K(2) → π?E.

Since these are concentrated in even degree, and are p-torsion free, by (2.4) this amounts to
computing maps of Γ-rings

A0[t, t−1]∧m → A0.

The Γ-ring structure on the left is given by P (t) = tp.
Recall that for a perfect field k there is a bijection

{ c ∈ (Wk)× | φ̃(c) = cp } ∼−→ k×.

Elements on the left-hand side are called Teichmuller lifts of units in k.
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11.7. Proposition. Elements f ∈ A×0 such that t(f) = s(f)p are precisely the the Teichmuller
lifts in Wk× ⊂ A×0 . Thus, there is a bijection

T (π?(E ∧ Σ∞+ Z)K(2), π?E)
∼−→ k×.

Proof. It is clear that Teichmuller lifts c ∈Wk satisfy the condition, since then t(c) = φ̃(c) =
cp.

Write A0 = Wk[[a]], where a ∈ A0 is an adapted coordinate. Suppose f ∈ A×0 such that
t(f) = s(f)p. By replacing f = f(a) with f/c, where c is a Teichmuller lift such that c ≡ f(0)
mod p, we reduce to the case that f(0) ≡ 1 mod p.

Working modulo p, and using the usual identification A1/(p) ≈ k[[b′]]×k k[[b]], we have that

s : f(a) 7−→ (f(b′), f(bp)),

t : f(a) 7−→ (f (1)(b′p), f (1)(b)).

The condition t(f) = s(f)p implies

f (1)(b′p) = f(b′)p, f (1)(b) = f(bp)p.

The first of these is always true, but the second amounts to f (1)(b) = f (1)(bp
2
), which cannot

hold for any non-constant power series. Thus we have shown that f(a) ≡ 1 mod pA0.
Now assume f(a) = 1 + pk g(a) for some k ≥ 1, g(a) ∈ A0. The condition t(f) = s(f)p

modulo pk+1A0 implies that
t(g(a)) ≡ 0 mod pA0,

and therefore, by using the formulas for t modulo p, we see that g(a) ≡ 0 mod pA0. Iterating
the argument shows that g(a) = 0. �

12. Cohomology of augmented T-algebras

In [Rez09], we defined a monad T on ModE? , which encodes the algebraic structure in the
homotopy of K(h)-local commutative E-algebras (see §7). We write T for the category of
T-algebras.

In this section, we will recall the homotopy theory of simplicial T-algebras, an encoded in
a Quillen model category structure on sT , and we will define the cohomology H∗TE? (B,M) of
augmented T-algebras, with coefficients in an abelian group object M , which is computed
using an appropriate cofibrant simplical resolution of B.

We will then describe a full subcategory of analytically complete T-algebras. . . .
Describe how above cohomology can sometimes be computed with analytically complete

resolutions. Requires model category structure for analytically complete T-algebras.
Set up composite functor spectral sequence. Handle case of analytic completion of smooth

algebra.

12.1. Homotopy theory of T-algebras. We recall some algebraic properties of the monad
T on ModE? .

12.2. Proposition. We have the following.

(1) The functor T commutes with filtered colimits.
(2) The functor T commutes with reflexive coequalizers.
(3) The functor T takes direct sums to tensor products. That is, the evident map T(M)⊗

T(N)→ T(M ⊕N) is an isomorphism.
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(4) The category T of T-algebras is complete and cocomplete. Limits, filtered colimits,
and reflexive coequalizers are created by the forgetful functor T → ModE?.

(5) Let FT : ModE? → T denote the free T-algebra functor. If M is a free E?-module,
then the underlying ring of FT(M) is a free Z/2-graded strongly commutative algebra.

Let sT denote the category of simplicial objects in T .

12.3. Proposition. There is a cofibrantly generated, simplicial closed model category structure
on sT with the following properties.

(1) Weak equivalences are maps which are weak equivalences on underlying simplicial sets,
(2) Fibrations are maps which are fibrations on underlying simplicial sets.
(3) Cofibrations are retracts of s-free maps.
(4) The model category structure is proper.

Proof. This is largely consequence of [Qui67, §II.4, Thm. 4]. Because reflexive coequalizers in
T are computed in the underlying category ModE? , the collectionFT(E?), FT(ω1/2)} is what
Quillen calls a set of small projective generator of T , and thus condition (**) of his theorem
is satisfied. Therefore, sT admits a simplical model category structure with the specified
classes of morphisms. Cofibrant generation and the description of cofibrations is implicit in
Quillen’s construction of factorizations.

To show that T is proper, it suffices by [Rez02, Thm. 9.1] to observe that for any finitely
generated free E?-module, the functor sT → sT defined by B 7→ B

∐
FT(M) (coproduct in

sT , where FT(M) is regarded as a constant simplicial object), takes weak equivalences to weak
equivalences. This is because coproducts in T are tensor products, and FT(M) is a strongly
commutative Z/2-graded polynomial ring over E?, and hence flat as an E?-module. �

We immediately obtain a model category structure on the slice category sTE? , the category
of simplicial objects in augmented T-algebras.

12.4. Cohomology of augmented T-algebras. Recall that there is a category ab TE? of
abelian group objects in TE? , which may be identified with the full subcategory of augmented
T-algebras with square-zero augmentation ideal. It will be convenient notationally to indicate
an abelian group object by specifying its augmentation ideal only, so that an objectM ∈ ab TE?
has associated T-algebra E? oM .

There is an adjoint pair
Q : TE? � ab TE? :E? o−,

where Q takes B → E? to B/B
2
, where B = Ker[B → E?].

12.5. Proposition. There is a cofibrantly generated, simplical closed model category structure
on s(ab TE?), so that

• weak equivalences and fibrations are those on underlying simplicial sets, and
• the adjoint pair

Q : sTE? � s(ab TE?) :E? o−
is a Quillen pair.

Proof. The model structure is immediate, since ab TE? is an abelian category with enough
projectives. (Projective generators are given by Q(FT(M)→ E?), where M is a free E?-module
and the augmentations sends M to 0.) The existence of the Quillen pair is immediate. �
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Given M ∈ ab TE? and n ≥ 0, let K(M,n) denote the Eilenberg-MacLane object in
s(ab TE?) with πnK(M,n) ≈ M . We then define the nth cohomology group of an
augmented T-algebra B with coefficients in an abelian group object M by

Hn
TE? (B,M)

def
= h(sTE?)

(
B,E? oK(M,n)

)
≈ h(s(ab TE?))

(
LQ(B), K(M,n)

)
.

Here LQ denotes the total left derived functor of Q : sTE? → s ab TE? . Note that E? o
− : s ab TE? → sTE? computes its own total right derived functor, since all objects in s ab TE?
are fibrant.

This description immediately implies a composite functor spectral sequence.

12.6. Proposition. There is a first quadrant spectral sequence of the form

Extjab TE?
(LiQ(B),M) =⇒ H i+j

TE?
(B,M),

where LiQ(B) = πiLQ(B) denote the derived functors of the indecomposables functor Q.

12.7. Analytic completion. We need to incorporate analytic completion into our story.
We write A : ModE? → ModE? for the analytic completion functor with respect to the the

sequence p, u1, . . . , un−1 ∈ E0, defined by

A(M)
def
= M [[x0, . . . , xn−1]]/(x0 − p, x1 − u1, . . . , xn−1 − un−1)M [[x0, . . . , xn−1]].

It comes with a natural unit map η : M → A(M), and a natural comparison mapA(M)→M∧
m

to the m-adic completion of M , factoring the usual map M → M∧
m . By construction, the

functor A is right-exact, and commutes with arbitrary products.

12.8. Proposition. If M is regular for the sequence p, u1, . . . , un−1, then the comparison map
A(M)→M∧

m is an isomorphism.

As a consequence, A is isomorphic to the 0th left derived functor of m-adic completion,
typically denoted L0.

Say that an E?-module is analytic if η : M → A(M) is an isomorphism. Let M̂odE? ⊂
ModE? denote the full subcategory of analytic modules.

12.9. Proposition. The analytic completion functor A takes values in the full subcategory

M̂odE? of analytic objects, and thus provides the left-half of an adjoint pair

A : ModE? � M̂odE? : incl.

The category M̂odE? has enough projectives, and is complete and cocomplete. Furthermore,

the inclusion functor M̂odE? → ModE? commutes with finite colimits and arbitrary limits.

Say that M ∈ ModE? is tame if LkA(M) ≈ 0 for k ≥ 1, where LkA denote the left-
derived functors of A : ModE? → ModE? . (These coincide with the left-derived functors of

A : ModE? → M̂odE? , since the inclusion functor is exact.)

12.10. Proposition. Flat E?-modules are tame. Analytic E?-modules are tame.

Let sModE? denote the category of simplicial E?-modules.

12.11. Proposition. Let M be an object of sModE? which is (i) degreewise tame, and (ii)
is such that π∗M is analytic. Then η : M → A(M) is a weak-equivalence of simplicial
E?-modules. flat.
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Proof. This is immediate from the evident spectral seqeunce Ei,j
2 = LiA(πjM) =⇒ πi+jA(M),

which is defined because M is degreewise tame. �

The connection to homotopy theory is given by the following.

12.12. Proposition. Let M ∈ M be an E-module spectrum. Then M is K(h)-local if and
only if π?M is analytic.

12.13. Analytic T-algebras. Consider the natural map ATη : AT → ATA of functors
ModE? → ModE? . The following says that the functor T is in some sense compatible with
analytic completion.

12.14. Proposition. The map ATη : AT→ ATA is an isomorphism.

Proof. Proved by Barthel and Frankland [BF13]. �

Let T̂ ⊂ T denote the full subcategory of T-algebras whose underlying E?-module is
analytic.

12.15. Proposition. There is an adjoint pair

AT : T � T̂ : incl,

with the property that on underlying E?-modules, the left adjoint AT coincides with analytic
completion of E?-modules.

Proof. Given a T-algebra (B,ψ : TB → B), we define a T-algebra AT (B) to be

(AB, ψ̂ : TAB → AB), where ψ̂ = (Aψ) ◦ (ATη)−1 ◦ η. It is straightforward using (12.14) to
show that this is in fact a T-algebra, and that η : B → AB defines a T-algebra map. �

In particular, the analytic completion of a T-algebra is canonically a T-algebra. From now

on we will write A : T → T̂ for AT, and A : T → T for the composite of A with inclusion.
The above story descends to abelian group objects in augmented T-algebras. Recall the

indecomposable quotient functor Q : TE? → ab TE? .
12.16. Proposition. The map AQη : AQ→ AQA is an isomorphism.

Proof. We have a diagram

B ⊗B //

η⊗η
��

B //

η

��

Q(B) //

Q(η)
��

0

AB ⊗AB // AB // Q(AB) // 0

with exact rows. After appyling A to this diagram, the rows remain exact. The map A(η) is
clearly an isomorphism, and the map A(η ⊗ η) is an isomorphism by [HS99, ???]. �

Let ab T̂E? denote the full subcategory of ab TE? whose underlying E?-module is analytic.

12.17. Proposition. There is an (up to isomorphism) commutative square of adjoint pairs,
whose left adjoints are

TE?
AT

//

Q

��

T̂E?
Q̂
��

ab TE? AQ
// ab T̂E?
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12.18. Homotopy theory of analytic T-algebras. Let sT̂ denote the category of simpli-

cial objects in T̂ , which may be identified as a full subcategory of sT .

12.19. Proposition. There is a simplicial closed model category structure on sT̂ with the
following properties.

(1) Weak equivalences are maps which are weak equivalences on underlying simplicial sets.
(2) Fibrations are maps which are fibrations on underlying simplicial sets.
(3) Cofibrations are maps which are retracts of s-free maps.
(4) The adjoint pair

AT : sT � sT̂ : incl

is a Quillen pair.
(5) The map of derived functors LAT ◦ Rincl → Id is an isomorphism. Thus,

Rincl : h(sT̂ ) → h(sT ) is fully faithful, with essential image the full subcategory
of h(sT ) consisting of simplicial T-algebras B such that π?B is analytic.

The above descends to abelian group objects. Thus, let ab T̂E? denote the category of
abelian group objects in TE? whose underlying E?-module is analytic.

13. Mapping space spectral sequence

Define a good resolution of a K(h)-local commutative E-algebra (i.e., simplicial resolution
built from K(h)-localization of free algebras on free E-modules). Use to construct mapping
space spectral sequence, and identify E2-term as cohomology.
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