
WHAT ARE RECOLLEMENTS IN STABLE HOMOTOPY THEORY?

CHARLES REZK

I keep forgetting how recollements are supposed to work, so I wrote up this note for myself. This
is based on Barwick and Glasman, “A note on stable recollements” [BG16], although I have modified
the notation somewhat.

You can think of a recollement (in the context of stable ∞-categories) as a very nice kind of
“short exact sequence” of stable ∞-categories. However, the notion of recollement comes with a lot
of structure, which can express itself in lots of ways. It is a very familiar pattern in stable homotopy
theory. It is typicially nearby whenever one encounters something called an “fracture square”.

1. Definition of recollement

In the following, I work with stable ∞-categories. (In practice, they will be presentable stable
∞-categories.) By full subcategory, I always mean a replete one, i.e., one which is stable under
isomorphisms. By a localization, I mean any functor which is characterized by the collection of
morphisms it inverts (so a localization is allowed to be a left adjoint or a right adjoint, or both, or
neither).

A recollement is a sequence of functors between stable ∞-categories of the form

U //
i∗ // X

j∗
// // Z

with the following properties.

(1) The functor i∗ is fully faithful, and is both a left and right adjoint.
(2) The functor j∗ is a localization, and is both a left and right adjoint.
(3) The sequence is exact, in the sense that j∗X = 0 iff X is in the essential image of i∗.

In particular, the above diagram can be extended to one of the form

U //
i∗ // X

j∗
// //

i#oooo

i!oooo
Z

oo
j#
oo

oo
j!oo

in which i# and j# are left adjoints and i! and j! are right adjoints. Furthermore, we may identify
three full subcategories of X as essential images of these functors:

U = i∗U, Z∨ = j#Z, Z∧ = j!Z.

Note that typically Z∨ ̸= Z∧.

1.1. Remark. I’ve chosen the notation so that i-functors always involve U, while j-functors always
involve Z. Also, lower index functors (i∗, j#, j!) are always fully faithful, while upper index functors

(i#, i!, j∗) are always localizations. Finally, functors decorated with # are left adjoints, functors
decorated with ! are right adjoints, while functors decorated with ∗ are both.

Given this structure, there are a large number of statements which follow, which can be largely
summarized as:

• all three “horizontal sequnces” in the above diagram are exact,
• there are “orthogonality relations” Z∨ ⊥ U ⊥ Z∧ between the various subcategories,
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• there are cofiber sequnces relating the various localizations functors, which
• fit into “fracture squares”.

1.2. Proposition. Given a recollement as above, we have the following properties.

(1) The subcategory U is a right orthogonal complement of Z∨. That is, X ∈ U iff Hom(M,X) =
0 for all M ∈ Z∨.

(1’) The subcategory U is a left orthogonal complement of Z∧. That is, X ∈ U iff Hom(X,N) = 0
for all N ∈ Z∧.

(2) The subcategory Z∨ is a left orthogonal complement of U. That is, X ∈ Z∨ iff Hom(X,U) = 0
for all U ∈ U.

(2’) The subcategory Z∧ is a right orthogonal complement of U. That is, X ∈ Z∧ iff Hom(U,X) =
0 for all U ∈ U.

(3) The sequence of functors Z
j#−→ X

i#−→ U is exact. That is, X ∈ Z∨ iff i#X = 0.

(3’) The sequence of functors Z
j!−→ X

i!−→ U is exact. That is, X ∈ Z∧ iff i!X = 0.

(4) There is a natural cofiber sequence j#j
∗X

ϵ−→ X
η−→ i∗i

#X, where η and ϵ are unit and counit
of the relevant adjunctions.

(4’) There is a natural cofiber sequence i∗i
!X

ϵ−→ X
η−→ j!j

∗X, where η and ϵ are unit and counit
of the relevant adjunctions.

(5) There is a natural pullback square

X
η

//

η
��

j!j
∗X

ηj!j
∗

��

i∗i
#X

i∗i#η

// i∗i
#j!j

∗X

where η and ϵ are unit and counit of the relevant adjunctions.
(5’) There is a natural pullback square

i∗i
!j#j

∗X
ϵj#j∗

//

i∗i∗ϵ
��

j#j
∗X

ϵ

��

i∗i
!X ϵ

// X

where η and ϵ are unit and counit of the relevant adjunctions.

Proof. I’ll prove (1), (2), (3), (4), and (5), as the other statements are analogous. To prove (1),
we use HomX(j#M,X) = HomZ(M, j∗X), so that X has no maps from objects of Z∨ iff j∗X = 0,
which holds iff X ∈ U.

Next I claim that for all X ∈ X the cofiber Y of the counit map ϵ : j#j
∗X → X is in U. To see

this, note that by properties of the adjunction, the composite of

j∗X
ηj∗−−→ j∗j#j

∗X
j∗ϵ−−→ j∗X

is the identity map, where η : N → j∗j#N is the counit of the adjunction. But since j# is fully
fathiful, we have that η is an isomorphism whenever N = j∗X. Thus j∗ϵ is an equivalence, whence
j∗Y = 0, so Y ∈ U as desired.

To prove (2), note that we have already shown that Hom(M,U) = 0 for all M ∈ Z∨ and
U ∈ U. Now suppose X is such that Hom(X,U) = 0 for all U ∈ U. Consider the cofiber sequence
j#j

∗X → X → Y , and note that we also have HomX(j#j
∗X,U) = HomZ(j

∗X, j!U) = 0 for all
U ∈ U, whence Hom(Y, U) = 0 for all U ∈ U. But we know Y ∈ U, so we conclude that Y = 0, so
j#j

∗X → X is an isomorphism, and thus X ∈ Z∨ as desired.



WHAT ARE RECOLLEMENTS IN STABLE HOMOTOPY THEORY? 3

To prove (3), we use HomU(i#X,U) = HomX(X, i∗U) and (2) to conclude that X is in the
essential image of j# iff i#X = 0.

To prove (4) consider the diagram

j#j
∗X

ϵ //

η
��

X //

η
��

Y

η ≈
��

i∗i
#j#j

∗X
i∗i#ϵ

// i∗i
#X // i∗i

#Y

where the top row is a cofiber sequence, and the bottom row is obtained by applying i∗i
# to the

top row, and so is also a cofiber sequence. We have already observed that Y ∈ U, and therfore
η : Y → i∗i

#Y is an isomorphism. Finally, i#j# = 0 by (3) we have that i∗i
#j#j

∗X = 0. Thus

i∗i
#X → Y is an isomorphism, exhibiting the desired cofiber sequence.
To prove (5), use (4) and (4’) to extend the commutative square to one of the form

j#j
∗i∗i

!X
j#j∗ϵ

//

ϵi∗i!

��

j#j
∗X

j#j∗η
//

ϵ

��

j#j
∗j!j

∗X

ϵj!j
∗

��

i∗i
!X

ϵ //

ηi∗i!

��

X
η

//

η
��

j!j
∗X

ηj!j
∗

��

i∗i
#i∗i

!X
i∗i#ϵ

// i∗i
#X

i∗i#η
// i∗i

#j!j
∗X

in which all rows and columns are cofiber sequences. The claim follows since j∗i∗ = 0, so the
upper-left corner is 0. □

We can explicitly reconstruct X using data based on the subcategories U and Z∧, or U and Z∨.

1.3. Proposition. The functor

Z∧ ×X Fun(∆1,X)×X U → X

which sends a morphism Z → U to its fiber is an equivalence. The functor

U×X Fun(∆1,X)×X Z∨ → X

which sends a morphism U → Z to its fiber is an equivalence.

Proof idea. (See Barwick-Glasman, Lemma 9.) By property (4’) above, any X ∈ X fits in a fiber

sequence X
η−→ j!j

∗X → Σi∗i
!X with j!j

∗X ∈ Z∧ and i∗i
!X ∈ U. Conversely, given any fiber

sequence X → Z → U with Z ∈ Z∧ and U ∈ U, we have j!j
∗X

∼−→ j!j
∗Z ≈ Z since j∗U = 0 and

U ≈ i∗i
!U

∼−→ Σi∗i
!X since i!Z = 0.

Similarly by property (4) above, any X ∈ X fits in a fiber sequence X
ϵ−→ i∗i

#X → Σj#j
∗X

with i∗i
#X ∈ U and j#j

∗X ∈ Z∨. Conversely, given any fiber sequence X → U → Z with U ∈ U

and Z ∈ Z∨, we have i∗i
#X

∼−→ i∗i
#U ≈ U since i#Z = 0 and Z ≈ j#j

∗Z
∼−→ Σj#j

∗X since
j∗U = 0. □

2. The symmetric monoidal case

Let’s think about what this looks like when U,X,Z are presentably symmetric monoidal, and
the localization functors i# : X → U and j∗ : X → Z are strongly symmetric monoidal. Then we
can describe the situation as follows.

• Let L := i∗i
#
1. Then, with respect to the unit map 1 → L of the adjunction, L is an

idempotent ring.
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• Let C := j#j
∗
1. Then, with respect to the counit map C → 1 of the adjunction, C is an

idempotent coring.

• These counit and unit maps fit into a cofiber sequence C
ϵ−→ 1

η−→ L.
• We have U = Mod(L) and Z∨ = Comod(C), with the inclusions into X corresponding to
the evident forgetful functors.

• The localization monads and comonads are described by

X
i∗i#=L⊗−

--

i∗i!=[[L ,−]]

11

j#j∗=C⊗−
qq

j!j
∗=[[C ,−]]

mm

so that the cofiber sequences relating them have the form

C ⊗X → 1⊗X → L⊗X, [[L ,X]] → [[1 , X]] → [[C ,X]].

Here I write [[X ,Y ]] for an internal function object.
• The arithmetic squares have the form

X //

��

[[C ,X]]

��

L⊗X // L⊗ [[C ,X]]

[[L ,C ⊗X]] //

��

C ⊗X

��

[[L ,X]] // X

3. Some examples

Here are some standard examples of recollements which appear in stable homotopy theory.
Because full subcategories seem easier to visusualize than localizations, I’ll often exhibit these
diagramatically in the form:

U // // X
j∗

j∗
// //

i#oooo

i!
oooo

Z∨

≈

Z∧

oooo

oooo

In this case, the functor j∗ : X → Z may have two different descriptions, according to which
subcategory is identified with its codomain.

3.1. Example (p-completion). This is:

ModS[1/p] // // ModS
Σ−1S/p∞⊗−

[[Σ−1S/p∞ ,−]]
// //

S[1/p]⊗−
oooo

[[S[1/p] ,−]]
oooo

(ModS)
p-tors

≈

(ModS)
∧
p

oooo

oooo

where X = ModS = Sp is spectra, U = ModS[1/p] is the full subcategory of spectra on which p is an

isomorphism, Z∧ = (ModS)
∧
p is the full subcategory of p-complete spectra, and Z∨ = (ModS)

p-tors

is the full subcategory of p-torsion spectra. Then L = S[1/p] and C = Σ−1S/p∞. The arithmetic
square is

X //

��

Xp

��

S[1/p]⊗X // S[1/p]⊗Xp

where Xp = [[Σ−1S/p∞ , X]] is the p-completion of X.
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3.2. Example (Lf
n localization). This is:

Lf
nSp // // Sp

Cf
nS⊗−

[[Cf
nS ,−]]

// //

Lf
nS⊗−

oooo

[[Lf
nS ,−]]

oooo

Cf
nSp

≈

Sp
Cf

nS

oooo

oooo

where X = Sp is the category of spectra, U = Lf
nSp is the full subcategory of Lf

n-local spectra,

Z∧ = Sp
Cf

nS
is the full subcategory of Cf

nS-local spectra, and Z∨ = Cf
nSp is the full subcategory

spanned by X such that Lf
nX = 0. (Here Cf

nX = fiber of X → Lf
nX.) Then L = Lf

nS and C = Cf
nS.

The arithmetic square is

X //

��

[[Cf
nS , X]]

��

Lf
nX // Lf

n[[C
f
nS , X]]

3.3. Example (Monochromatic localization). This is:

Lf
n−1Sp

// // Lf
nSp

Mf
n

LT (n)

// //

Lf
n−1S⊗−
oooo

[[Lf
n−1S ,−]]

oooo

Mf
nSp

≈

SpT (n)

oooo

oooo

where X = Lf
nSp is the full subcategory of Lf

n-local spectra, U = Lf
n−1Sp is the full subcategory of

Lf
n−1-local spectra, Z

∨ = Mf
nSp is the full subcategory of n-monomochromatic spectra (i.e., Lf

n-local

and killed by Lf
n−1), and Z∧ = SpT (n) is the full subcategory of T (n)-local spectra, where T (n) is a

telescope on a type n finite spectrum. Then L = Lf
n−1S and C = Lf

nC
f
n−1S. The arithmetic square

is

Lf
nX //

��

LT (n)X

��

Lf
n−1X

// Lf
n−1LT (n)X

3.4. Example (Equavariant spectra and isotropy separation). Recall that unstable G-equivariant
homotopy theory SG is equivalent to PSh(OrbG), presheaves on the orbit category of G. Note that

in this category the diagonal map of EG is an equivalence: EG
∼−→ EG× EG. The cofiber of the

projection EG → ∗ is denoted ẼG.

Let X = SpG be the category of genuine G-spectra. Let C = Σ∞
+ EG and L = Σ∞ẼG. Then we

get a recollement:

Spu-acycG
// // SpG

Σ∞
+ EG⊗−

[[Σ∞
+ EG ,−]]

// //

Σ∞ẼG⊗−
oooo

[[Σ∞ẼG ,−]]

oooo

SpfreeG

≈

SpBorel
G

oooo

oooo

where Z∨ = SpfreeG is the full subcategory of free G-spectra, Z∧ = SpBorel
G is the full subcategory of

Borel G-spectra, and U = Spu-acycG is the full subcategory of G-spectra whose underlying ordinary
spectrum is contractible.
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We can also identify Z = SpBG = ModS[G], the category of spectra equipped with a G-action, in

which j∗ : SpG → SpBG the underlying spectrum funtor, i.e., [Σ∞
+ G/e,−], the functor j# : SpBG →

SpG is given by Σ∞
+ G/e⊗S[G] −, and j! : Sp

BG → SpG is “Borelification”.
The associated arithmetic square is

X //

��

[Σ∞
+ EG,X]

��

Σ∞ẼG⊗X // Σ∞ẼG⊗ [Σ∞
+ EG,X]

If G = Cp is a prime cyclic group, then taking G-fixed points of this square (i.e., the mapping
spectrum from S) gives a pullback square in Sp of the form

XG //

��

XhG

��

ΦGX // XtG

where XhG is the G-fixed points of the underlying spectrum with G-action, ΦG is geometric fixed
points, and XtG is the Tate spectrum. (Much of this can be found in Dennis Nardin, “Introduction
to equivariant homotopy theory” [Nar20]. See also Mathew-Naumann-Noel, “Nilpotence and descent
in equivariant stable homotopy theory” [MNN17].) These ideas extend more general isotropy
separation diagrams associated to more general groups, though I’m not sure how to state it cleanly.
(See Glasman, “Stratified categories, geometric fixed points, and a generalized Arone-Ching theorem”
[Gla15].)
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