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Abstract. The modern understanding of the homotopy theory of spaces and spectra
is organized by the chromatic philosophy, which relates phenomena in homotopy theory
with the moduli of one-dimensional formal groups. In this paper, we describe how certain
phenomena in K(n)-local homotopy can be computed from knowledge of isogenies of
deformations of formal groups of height n.
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1. Introduction

A sweeping theme in the study of homotopy theory over the past several decades
is the chromatic viewpoint. In this philosophy, phenomena in homotopy theory
are associated to phenomena in the theory of one-dimensional formal groups. This
program was instigated by Quillen’s observation of the connection between complex
bordism and formal group laws [Qui69].

The chromatic picture is best described in terms of localization at a chosen
prime p. After one localizes at a prime p, the moduli of formal groups admits
a descending filtration, called the height filtration. According the chromatic phi-
losophy, this filtration is mirrored by a sequence of successive approximations to
homotopy theory. The difference between adjacent approximation is the nth chro-
matic layer, which is associated by the chromatic picture to formal groups of height
n. Phenomena in the nth chromatic layer may be detected using cohomology the-
ories called Morava K-theories and Morava E-theories, which are typically (and
unimaginatively) denoted K(n) and En. A good recent introduction to this point
of view is is [Goe].

In this paper I will describe a particular manifestation of the chromatic picture,
which relates “K(n)-local homotopy theory” (i.e., one manifestation of the nth
chromatic layer in homotopy theory), to isogenies of formal groups.

∗The author’s work described in this paper was supported by the NSF under grants DMS-
0505056 and DMS-1006054, and was written while the author was in residence at the Mathemati-
cal Sciences Research Institute in Berkeley, California, during the Spring 2014 semester supported
the NSF under grant 0932078000.
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This document is a slightly revised version of one which appears in the proced-
ings of the ICM, 2014 Seoul. Some of the results describe here are joint work with
others, including some not-yet-published work with Matt Ando, Mark Behrens,
and Mike Hopkins.

2. Formal groups and localized homotopy theory

We briefly recall the role and significance of formal groups in homotopy theory.

2.1. Complex orientation and formal groups. Recall that a gener-
alized cohomology theory E∗ is said to be complex orientable if (i) it takes values

in graded rings, and (ii) if there exists an element x ∈ Ẽ∗CP∞ which restricts to the

fundamental class in Ẽ∗CP1. To such a theory is associated a (one-dimensional,
commutative) formal group GE , which is the formal scheme over the ring E∗

with coefficient ring OGE
= E∗CP∞.

Remark 2.1. For a complex orientable theory, a choice of element x as in (ii)
gives rise to an “Euler class” on complex line bundles, defined by ex(L → X) :=
f∗(x) ∈ E∗(X) where f : X → CP∞ classifies L, together with a power series
Fx(t1, t2) ∈ E∗[[t1, t2]] expressing the Euler class of a tensor product of lines:

ex(L1 ⊗ L2) = Fx(ex(L1), ex(L2)),

which is an example of a formal group law on E∗. Both ex and Fx depend
on the choice of “coordinate” x ∈ OGE

= E∗CP∞. The formal group GE is a
coordinate-free expression of the collection of formal group laws associated to E,
and depends only on the cohomology theory E itself.

Example 2.1. For a ring R, let HR∗ denote ordinary cohomology with coefficients
in R. For any R, the theory HR∗ is complex orientable, and the resulting formal
group GR is the additive formal group. In fact, if we take x ∈ HR2(CP∞) to be
any generator, we have that Fx(t1, t2) = t1 + t2, and recover the classical addition
formula for first Chern classes of complex line bundles.

Example 2.2. Complex bordism MU∗ is a complex oriented theory, which comes
with a tautological choice of coordinate x ∈MU2CP∞. Quillen [Qui69] identified
the resulting formal group Fx as the universal formal group law. In coordinate-
free language, we may say that the formal group GMU of complex bordism is
the universal example of a formal group equipped with the data of a choice of
coordinate.

All formal groups over a given field of characteristic 0 are isomorphic to the
additive formal group. For a formal groups G over fields k of characteristic p,
there is an isomorphism invariant called the height of G, which is an element
n ∈ Z≥1 ∪ {∞}. For separably closed k, the height is a complete invariant.
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Example 2.3. Fix a prime p. For any height n ∈ Z≥1, there exist complex
cohomology theories whose formal group is one of height n. The standard examples
are the Morava K-theories K(n), whose coefficient ring is K(n)∗ = Fp[v±n ] with
vn ∈ K(n)−2(pn−1), and whose formal group is the Honda formal group of
height n.

Example 2.4. For any formal group G0 of height 1 ≤ n <∞ over a perfect field
k, Lubin and Tate constructed its universal deformation, which is a formal group
G defined over the complete local ring Wpk[[u1, . . . , un−1]], whose restriction at the
special fiber is G0. There is a corresponding cohomology theory called Morava
E-theory, which will play an important role in our story; see §4.2 below.

Formal groups of infinite height over fields of characteristic p are isomorphic to
the additive formal group. Ordinary homology HFp with mod p coefficients is an
example of a complex oriented theory whose formal group has infinite height.

It is conventional to say that any formal group over a field of characteristic zero
has height 0. Ordinary homology HQ with rational coefficients is an example of a
theory with such a formal group.

2.2. Localized homotopy theory. Associated to any homology theory
E is a corresponding localization functor, first constructed in full generality by
Bousfield [Bou75]. Say that a based space Y is E-local if for any based CW-

complex K such that Ẽ∗(K) ≈ 0, the space Map∗(K,Y ) of based maps is weakly
contractible. Bousfield showed that for any space X, there exists a space XE and
a map ηE : X → XE , called the E-localization of X, such that (i) the map ηE
induces an isomorphism in E-homology, and (ii) XE is E-local. Furthermore, the
operation X 7→ XE can be realized functorially.

Example 2.5. For ordinary homology theories E = HR, localization of spaces
is well-behaved in the absence of fundamental groups. For instance, π∗(XHQ) ≈
π∗X⊗Q ifX is simply connected, and π∗(XHFp) ≈ (π∗X)∧p ifX is simply connected
and finite type.

There is an analogous localization construction for spectra. In what follows we
will be most interested in localization with respect to Morava K-theory spectra.
In particular, for every prime p and n ≥ 1, there is a localization functor

X 7→ XK(n) : hSpectra→ hSpectraK(n) ⊂ hSpectra

from the homotopy category of spectra to the full subcategory of K(n)-local spec-
tra.

2.3. The functor of Bousfield and Kuhn. It is a remarkable observa-
tion of Bousfield [Bou87] and Kuhn [Kuh89] that localization functors on spectra
with respect to certain homology theories (such as Morava K-theories) actually
factor through the underlying space.

Fix a prime p and an integer n ≥ 1. There exists a functor

Φn : Spaces∗ → SpectraK(n) ⊂ Spectra
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from pointed spaces to K(n)-local spectra which makes the following diagram
commute up to natural weak equivalence.

Spectra
(−)K(n)

//

Ω∞
%%

SpectraK(n)

Spaces∗

Φn

88

The functor Φn is constructed using the existence of periodic phenomena in
stable homotopy theory [HS98]. Observe that given any space Y and map g : Y →
ΩdY with d ≥ 1, we can obtain a spectrum E by setting Ekd = Y using the g
as the structure map Ekd → ΩdEkd+d (much as periodic K-theory is obtained
from the Bott periodicity map U → Ω2U , though in our case g need not be an
equivalence). Given a based finite CW-complex K and a map f : ΣdK → K for
some d ≥ 1, define a functor ΦK,f : Spaces∗ → Spectra by associating to a based
space X the map

f∗ : Map∗(K,X)
f−→ Map∗(Σ

dK,X) ≈ Ωd Map∗(K,X),

from which we obtain a spectrum ΦK,f (X) as above. The functor ΦK,f (X) has
the properties:

• ΦK,f (ΩX) ≈ ΩΦK,f (X),

• If X = Ω∞Y is the 0-space of a spectrum Y , then

ΦK,f (Ω∞Y ) ≈ hocolimk Σ−kdHom(Σ∞K,Y ) ≈ (Σ∞f)−1Hom(Σ∞K,Y ),

the “telescope” of the function spectrum Hom(Σ∞K,Y ) induced by the map
Σ∞f .

Non-trivial examples are provided by a vn-self map, i.e., a pair (K, f) such that
K is a finite CW complex with K(n)∗K 6= 0 and f : ΣdK → K with d ≥ 1 such
that K(n)∗f is an isomorphism. (This implies that for any spectrum Y , the map
Hom(K,Y ) → f−1Hom(K,Y ) induces an isomorphism on K(n)∗-homology, and
thus ΦK,f is seen to be non-trivial.)

Such vn-self maps are plentiful by the periodicity theorem of Hopkins-Smith
[HS98]. Using this theory, [Kuh89] constructs Φfn as a homotopy inverse limit of a
suitably chosen family of functors Σ−qiΦKi,fi ; then Φn(X) := Φfn(X)K(n).

Remark 2.2. Given a vn-self map f of K, the homotopy groups π∗ΦK,f (X) ≈
f−1π∗Map(K,X) are the vn-periodic homotopy groups of the space X, usually
denoted v−1

n π∗(X;K) (they depend on K, but not on the choice of vn-self map
f). As a result, the spectrum Φn(X) contains information about the vn-periodic
homotopy groups of the space X. The extent to which this information is captured
depends in part on the status of the telescope conjecture, which if true would imply
that Φn = Φfn; see the discussion in [Kuh08].

Bousfield has developed a theory to effectively compute invariants of Φ1(X) for
certain spaces X, such as spheres and finite H-spaces [Bou99], [Bou05]. In §5, we
will outline an approach to generalize Bousfield’s results to the case of n ≥ 2.
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2.4. The Bousfield-Kuhn idempotent. Given a basepoint preserving
unstable map f : Ω∞F → Ω∞E where E is a K(n)-local spectrum, the K(n)-local
Bousfield-Kuhn functor gives rise to a map of spectra

F
ι−→ FK(n) ≈ ΦnΩ∞F

Φn(f)−−−−→ Ω∞E ≈ E,

and hence an infinite loop space map

φn(f) := Ω∞(Φn(f) ◦ ι) : Ω∞F → Ω∞E.

If f = Ω∞g for a map g : F → E of spectra, then Φn(f)◦ ι = g. Thus, the function

φn : hSpaces∗(Ω
∞F,Ω∞E)

Φ−→ hSpectra(F,E)
Ω∞−−→ hSpaces∗(Ω

∞F,Ω∞E)

is idempotent, with image precisely the set of homotopy classes of maps Ω∞F →
Ω∞E which are infinite loop maps.

It turns out to be possible to compute something about the map φn(f) (as
an unstable map), when E is a complex oriented cohomology theory to which
the character theory of Hopkins-Kuhn-Ravenel [HKR00] can be applied, such as
Morava E-theory. For the purposes of stating a result, we recall that the Hopkins-
Kuhn-Ravenel theory provides a natural ring homomorphism

χ : E0(X ×BG)→
∏

g∈Gn,p

DN ⊗E0 E0(X),

for any finite group G, where: X is a finite CW-complex, Gn,p is the set of con-
jugacy classes of homomorphisms ΛN = (Z/pN )n → G (for N sufficiently large,
depending on G), and DN is a certain faithfully flat extension of E0.

Let f : Ω∞F → Ω∞E be an H-map; i.e., the induced operation F 0(−) →
E0(−) is a group homomorphism. The following computes the operation φn(f).

Theorem 2.3. Let E be a K(n)-local complex orientable theory such that π∗E is
a complete local ring, and let f : Ω∞F → Ω∞E be an H-space map. Then for any
finite CW-complex X, the map

φn(f) : F 0(X)→ E0(X)

is given (modulo torsion in E0(X)) by

(φnf)(x) =

n∑
k=0

(−1)kp(
k
2)

(
p−k

∑
A⊆Λ∗1 , |A|=pk

χ(f(x̃ ∧ tA))(gA).

)
(2.1)

The inner sum is taken over all subgroups of Λ∗1 = Hom(Λ1, U(1)) of given order;
the map gA : Λ1 → A∗ = Hom(A,U(1)) is the dual homomorphism to the inclusion
A ⊆ Λ∗1; tA : Σ∞+ BA

∗ → S0 is the stable transfer map, and x̃ : Σ∞+ X → F is the
map of spectra representing x ∈ F 0(X).



6 Charles Rezk

It turns out that the inner sum of (2.1) in fact takes values in E0(X) ⊂
D1⊗E0 E0(X), and furthermore this value is divisible by pk, so that the bracketed
expression in (2.1) gives a well-defined element of E0(X) modulo torsion. The
statement (2.3) has not appeared in print elsewhere, but it is a consequence of the
methods of [Rez06].

Example 2.6. Let E = Kp be p-complete K-theory. Then the formula of (2.3)
becomes

(Φf)(x) = f(x)− p−1χ(f(x̃ ∧ tZ/p))(gZ/p).

In particular, if f : Ω∞F → Ω∞Kp is an H-map such that χ(f(x̃∧tZ/p))(gZ/p) = 0,
then f admits the structure of an infinite loop map. This immediately recovers a
well-known theorem of Madsen-Snaith-Tornehave [MST77].

There is a generalization of (2.1) for f which is not necessarily an H-map,
though it is too cumbersome to give it here. Another approach to producing
formulas for φn, where the target spectrum is E = K(n), is given in [SW08].

3. Units and orientations

The Bousfield-Kuhn idempotent can be usefully applied to the study of the units
spectrum of a commutative S-algebra.

3.1. The units of a commutative ring spectrum. Let R be a ho-
motopy associative ring spectrum. The units space of R is called GL1(R); it is
defined by the pullback square of spaces

GL1(R) //

��

Ω∞R

��

(π0R)× // // π0R

For a space X, we have hSpaces(X,GL1(R)) ≈ R0(X)× ⊆ R0(X).
When R is a commutative S-algebra, then GL1(R) admits a canonical structure

of a grouplike E∞-space, induced by the multiplicative structure of R. Write gl1(R)
for the (−1)-connected spectrum which is the infinite delooping of GL1(R), called
the units spectrum of R.

The units spectrum carries the obstruction to constructing orientations of com-
mutative S-algebras, as shown by May, Quinn, Ray, and Tornehave in [May77];
see [May09] and [ABG+] for recent treatments of this theory. Let f : g → o be a
map of (−1)-connective spectra, where o is the infinite delooping of BO, the clas-
sifying space of the infinite dimensional orthogonal group. Let BG = Ω∞g denote
the infinite delooping of g, and let MG denote the Thom spectrum of the virtual
vector bundle classified by B(Ω∞f) : BG→ BO; the spectrum MG admits (up to
weak equivalence) the structure of a commutative S-algebra. Then one can show
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that space of commutative S-algebra maps MG → R is weakly equivalent to the
space of null-homotopies of the composite map

g
f−→ o

j−→ gl1(S)→ gl1(R).

Thus, understanding the homotopy type of the spectrum gl1(R) is essential
to understanding G-orientations of R which are realized by maps of commutative
S-algebras.

3.2. A “logarithmic” operation. We use the Bousfield-Kuhn functor to
obtain information about the K(n)-localization of gl1(R). To do this, we consider
the “shift” map

s : GL1(R)
x7→x−1−−−−−→ Ω∞R.

This shift map is a based map between infinite loop spaces, and thus we may apply
the idempotent operator of §2.4 to it. If R is a K(n)-local commutative S-algebra,
we obtain in this way from this cohomology operation of the form

`n = φn(s) : R0(X)× → R0(X),

which is “logarithmic”, in the sense that `n(xy) = `n(x) + `n(y). The operation
`n is represented by a map of spectra gl1(R)→ R.

Example 3.1. To get a sense of what such an operation provides, consider the
following analogous situation, where E is a rational commutative S-algebra. For
any pointed and connected space X, we can define a group homomorphism

`Q : (1 + E
0
(X))× → E0(X) by `Q(x) = −

∑
m≥1(1− x)m/m = log(x).

The series defining `Q is converges: because X is connected, 1−x is nilpotent when
restricted to any connected finite CW-complex mapping to X. The operation `Q
is in fact stable: it is represented by a map of spectra (gl1E)≥1 → E (where Z≥n
denotes the (n− 1)-connected cover of a spectrum Z).

The above theory applies in this case to give the following.

Theorem 3.1 ( [Rez06]). Let E be a Morava E-theory (2.4), associated to the
Lubin-Tate universal deformation of a height n-formal group. Then its logarithmic
operation is given (modulo torsion) by the formula

`n(x) =
1

p
log

(
n∏
k=0

( ∏
A⊂Λ∗, |A|=pk

ψA(x)

)(−1)kp(
k
2)−k+1 )

. (3.1)

The functions ψA : E0(X)→ D⊗E0 E0(X) are certain natural additive and multi-
plicative cohomology operations (described below (4.1)), and log(x) = −

∑
m≥1(1−

x)m/m.
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The expression inside “log” in (3.1) is a multiplicative analog of (2.1), with the
role of x 7→ χ(f(x̃)∧tA, gA) in (2.1) replaced by the operation ψA. It turns out that
the expression inside log in (3.1) is in fact contained in E0(X) ⊆ D ⊗E0 E0(X),
and is congruent to 1 modulo p; thus evaluating the formal expansion of log at this
expression converges p-adically to an element of E0(X).

Example 3.2 (tom Dieck’s logarithm). An example of a Morava E-theory spec-
trum at height 1 is KUp, the p-completion of complex K-theory. In fact, it is
possible to generalize (3.1) in the case of n = 1 to any K(1)-local commutative
S-algebra E, so we will describe the result in this case [Rez06, Thm. 1.9]. The
formula (3.1) takes the form

`1(x) =
1

p
log
(
xp/ψp(x)

)
= −

∑
m≥1

1

pm

(
1 − xp/ψp(x)

)m
. (3.2)

If E is KUp or KOp, the operation ψp : E0(−) → E0(−) is the usual pth Adams
operation on p-complete real-or-complex K-theory.

We can do a little better in this case: the operation ψp on E0(−) satisfies a
“Frobenius congruence” ψp(x) ≡ xp mod pE0(−); therefore the infinite series of
(3.2) converges p-adically. The Frobenius congruence is “witnessed” by a cohomol-
ogy operation θp : E0(−) → E0(−), satisfying the identity ψp(x) = xp + p θp(x).
Thus we can write

`1(x) =
∑
m≥1

(−1)m
pm−1

m
(θp(x)/xp)m, (3.3)

and (3.3) in fact holds on the nose (i.e., not merely modulo torsion [Rez06, Thm.
1.9]). The right-hand side of (3.3) recovers the Artin-Hasse logarithm of
tom Dieck [tD89], who originally realized this operation as as spectrum maps
gl1(KUp)→ KUp and gl1(KOp)→ KOp without reference to the Bousfield-Kuhn
functor.

We can use (3.3), to compute the map `1 on homotopy groups, and we thus
recover the well-known equivalences of connected covers gl1(KUp)≥3

∼−→ (KUp)≥3

and gl1(KOp)≥2
∼−→ (KOp)≥2.

To understand (3.1) in the general case, we can formally pull the operations
ψA (which are ring homomorphisms) out of the logarithmic series, obtaining

`n(x) =

n∑
k=0

(−1)kp(
k
2)Tj(log x) where Tj := p−k

∑
A⊆Λ∗, |A|=pk

ψA. (3.4)

For x = 1 + y ∈ E0(X)× such that y2 = 0, this becomes

`n(x) =

n∑
k=0

(−1)kp(
k
2)Tj(y). (3.5)

In particular, taking X to be a sphere, we obtain a formula which computes the
effect of `n : gl1(E)→ E on homotopy groups (up to torsion).
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To understand how we can compute these operations, we must discuss “power
operations” for K(n)-local commutative rings (such as Morava E-theory). The
short answer is that such operations are controlled by certain isogenies of the
formal group associated to the theory, and in particular the operators Tj are “Hecke
operators” for the theory. We will come back to this in §4.

3.3. Application of the logarithm to orientation problems.

Example 3.3. Orientations of K-theory. Consider the composite

spin→ o
j−→ gl1(S)→ gl1(KOp)

`1−→ KOp. (3.6)

It is a standard calculation that all maps spin = Σ−1(KO≥4)→ KOp are null ho-
motopic. As `1 is here an equivalence on 2-connected covers (3.2), we immediately
see that the composite of (3.6) is null-homotopic, and thus there must exist a map
MSpin → KOp of commutative S-algebras. It can be shown that the Atiyah-
Bott-Shapiro orientation can be realized by one such map; see [Hop02, §6.1] for a
sketch.

3.4. Application to the string orientation of tmf. With Matt
Ando and Mike Hopkins, we have shown that tmf, the spectrum of topological
modular forms, admits a commutative S-algebra map MString → tmf which
realizes the Witten genus. Our proof only exists in preprint form, though the result
was announced in [Hop02, §6], to which the reader is referred for background. Here
we will only note the way in which the logarithmic operation enters into the proof.

The key point is to understand the homotopy type of gl1(tmfp), where tmfp is
the completion of tmf at a prime p. General results localizations show that there
is a commutative square of spectra

gl1(tmfp)
`2 //

`1

��

tmfK(2)

ιK(2)

��

tmfK(1)
γ
// (tmfK(2))K(1)

which, after taking 3-connected covers, becomes a homotopy pullback. Both
tmfK(2) and tmfK(1) are relatively well-understood objects: tmfK(2) is closely re-
lated to Morava E-theory spectra at height 2, while tmfK(1) is related to the theory
of p-adic modular forms. To understand the homotopy type of gl1(tmfp), we must
get our hands on the map γ. It can be shown that maps tmfK(1) → (tmfK(2))K(1)

are characterized (up to homotopy) by their effect on homotopy groups. Thus, the
key is to compute the effect of γ on homotopy groups.

Recall that there is a map π∗tmf → MF∗ to the ring of modular forms (with
integer coefficients), which is an isomorphism up to torsion. Given an element in
π2ktmf corresponding to a modular form f of weight k, we use (3.2) to obtain

`1(f) = f∗(q) := f(q)− pk−1f(qp),
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where the result is stated in terms of the q-expansion of f . The series f∗(q) is
the q-expansion of a p-adic modular form, and thus corresponds to an element of
π2ktmfK(1).

When we evaluate `2 at an element of π2ktmf associated to a modular form f ,
the result turns out to be again a modular form; i.e., the image of `2 : π∗tmfp →
π∗tmfK(2) is contained in the image of ιK(2) : π∗tmfp → π∗tmfK(2). In fact, (3.5)
implies

`2(f) = (1− T1 + pk−1)f,

where T1 is a classical Hecke operator on modular forms (usually written T (p) in
this context).

Using these calculations, one can deduce that γ = (ιK(2))K(1) ◦ (id−U), where
U : tmfK(1) → tmfK(1) is topological lift of the Atkin operator on p-adic modular
forms; see [Bak89] for a construction of this topological lift. This calculation
provides enough control on the homotopy type of gl1(tmfp) to study the set of
string-orientations of tmf.

Remark 3.2. These ideas actually allow one to construct (“by hand”) a spectrum
map `tmfp : gl1(tmfp) → tmfp, so that ιK(2) ◦ `tmfp = `2 and ιK(1) ◦ `tmfp =
(id−U) ◦ `1. This fact is in need of a more natural explanation.

Remark 3.3. If f =
∑
anq

n is an eigenform of weight k, then (1−T1 +pk−1)f =
(1 − ap + pk−1)f . In particular, if f is an Eisenstein series, then `2(f) = 0, an
observation which is is key to realizing the Witten genus as a string-orientation.

We note in passing that for an eigenform which is a cusp form and normalized
so that a1 = 1, the expression L(f, s) =

∏
p(1 − app−s + pk−1−2s)−1 is precisely

the L-series associated to the form. The significance of this to homotopy theory
remains unclear.

4. Power operations

The notion of a power operation originated in Steenrod’s construction of the epony-
mously named operations in ordinary cohomology with coefficients in Fp. A con-
venient modern formulation is in terms of structured commutative ring spectra.
There are various equivalent models of such; I will not distinguish among them here,
and I will call them commutative S-algebras; see [EKMM97] and [MMSS01] for
introductions to some of these models.

A (generalized) cohomology theory X 7→ E∗(X) is represented by a spectrum
E. If E is equipped with the structure of a commutative monoid in the homotopy
category of spectra, then X 7→ E∗(X) takes values in graded commutative rings.
For any m ≥ 0, there is a resulting cohomology operation x 7→ xm : E0(−) →
E0(−) defined by taking mth powers with respect to the product.

If E is equipped with the structure of a commutative S-algebra, then the mth
power map admits a refinement to a “total mth power operation” of the form

Pm : E0(X)→ E0(X ×BΣm),
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where BΣm is the classifying space of the symmetric group on m letters. The
function Pm is a multiplicative (but non-additive) natural transformation E0(−)→
E0(−×BΣm) of cohomology groups.

It is convenient to regard power operations as operations on the homotopy
groups of commutative S-algebras. For a commutative S-algebra R, the power
construction determines gives a function

Pm : π0R→ π0R
BΣ+

m , (4.1)

where RX := Hom(Σ∞X,R), the spectrum of maps from the suspension spectrum
of a pointed space X to R. (Operations in dimensions other 0 can also be obtained,
by replacing BΣ+

m with a suitable Thom spectrum. In the discussion below, I will
concentrate on operations in dimension 0 for simplicity.) Cohomology operations
for E∗(X) (such as Steenrod’s for ordinary cohomology) can be obtained by setting
R = EX+ , to be thought of as the ring of E-valued cochains on X.

Let us fix a commutative S-algebra E. To calculate power operations for
commutative E-algebras R, one must understand the functor R 7→ π0(RBΣ+

m) =
R0(BΣm), which in practice can be non-trivial. The best case scenario is to have
a natural “Künneth isomorphism”

π∗R
BΣ+

m ≈ π∗R ⊗π∗E π∗E
BΣ+

m , (4.2)

together with calculational control of the rings π∗E
BΣ+

m ≈ E−∗BΣm, the E-
cohomology rings of symmetric groups.

This best case scenario is in fact relatively rare. It does hold for HF -algebras,
where F is a field [BMMS86]. It holds also for K(n)-local commutative E-algebras,
where E is a Morava E-theory spectrum.

4.1. Power operations in the K(n)-local setting. In 1993, Hopkins
and Miller perceived that a Morava E-theory spectrum must admit an essentially
unique commutative S-algebra structure; the proof of this result is in [GH04].
Therefore Morava E-theories admit a theory of power operations; such operations
were first considered by Ando [And95]1.

Example 4.1. The operations ψA appearing in (3.1) are obtained as power oper-
ations for Morava E-theory, namely as the composite

E0(X)
P

pk−−→ E0(X ×BΣpk)
(id×Bi)∗−−−−−−→ E0(X ×BA∗) χ(−,gA)−−−−−→ D ⊗E0 E0(X),

where Ppk is the total power operation for the Morava E-theory, i : A∗ → Σpk is
the inclusion defined by the left-action of A∗ on its underlying set, where pk = |A∗|.
These are examples of the operations constructed in [And95].

1In fact, Ando did not make use of the commutative S-algebra structure of E, which was
unavailable at the time, though he does show that the operations he constructs are the same as
those obtained from any commutative S-algebra structure which might exist on E.
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The theory of power operations for commutative algebras over Morava E-
theories is now very largely understood, based mainly on work by Ando, Hopkins,
and Strickland, who were motivated by the problem of rigidifying the Witten genus
to a map of spectra [AHS04], along with some contributions by the author [Rez09].

Our goal in this section is two-fold: to show (i) the homotopy groups π∗R
of a K(n)-local commutative E-algebra R take values in a category QCoh(Def)
of sheaves on a moduli problem of “formal groups and isogenies”, and (ii) the
category QCoh(Def) can in practice be described using a small amount of data,
and in fact at small heights can be described completely explicitly. In addition to
the references given below, the material in this section is developed in detail in the
preprint [Rezb].

4.2. Deformations and Morava E-theory. We fix a height n formal
group (commutative, one-dimensional) G0 over a perfect field k.

Given a formal group G over a complete local ring B, a (G0-)deformation
structure on G/B is a pair (i, α) consisting of an inclusion i : k → B/m of fields
and an isomorphism α : i∗G0

∼−→ GB/m of formal groups over B/m. We write
D(G/A) = DG0

(G/A) for the set of deformation structures on G/A. Note that
if g : A → A′ is a local homomorphism, there is map g∗ : D(G/A) → D(g∗G/A′)
induced by base change.

An isogeny of formal groups over A is a homomorphism f : G → G′ such
that the induced map OG′ → OG on function rings is finite and locally free; we
write deg(f) for the rank of OG as an OG′ -module. Given such an isogeny, there
is an induced pushforward map f! : D(G/A) → D(G′/A) on sets of deformation
structures, so that

f∗(i, α) := (i ◦ φr, α′),
where φ(a) = ap is the absolute Frobenius on rings, pr = deg f , and α′ is the
unique isomorphism such that α′ ◦ F r = fB/m ◦ α, where

F r : G→ (φr)∗G

denotes the Frobenius isogeny, i.e., the relative prth power Frobenius defined
for any G over an Fp-algebra.

Remark 4.1. An easy exercise shows that, when Fp ⊆ A, there is an identity
F∗ = φ∗ of maps D(G/A)→ D(φ∗G/A).

Given a complete local ring B, let Def0(B) = Def0
G0

(B) denote the groupoid
so that

• objects are pairs (G, (i, α) ∈ D(G/B)),

• morphisms are isomorphims f : G→ G′ such that f∗(i, α) = (i′, α′).

Proposition 4.2 (Lubin-Tate [LT66]). All automorphisms in Def0(B) are identity
maps (i.e., Def(B) is equivalent to a discrete groupoid). There exists a ring A0

and a natural bijection

{local homomorphisms A0 → B} ←→ {iso. classes of objects in Def0(B)}.
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There is a (non-canonical) isomorphism A0 ≈Wpk[[a1, . . . , an−1]].

The tautological object of Def0(A0) is the universal deformation of G0. It is
the formal group of Morava E-theory, whose existence follows from the following.

Theorem 4.3 (Morava [Mor78], Goerss-Hopkins-Miller [GH04]). Given a for-
mal group G0 of height n over a perfect field, there exists an essentially unique
commutative S-algebra E, which is a complex oriented cohomology theory with
π∗E ≈ A0[u, u−1] with |u| = 2, whose formal group is the universal deformation of
G0.

4.3. The “pile” of deformation structures. We enlarge the groupoid
Def0(B) to a category Def(B), with the same objects, but so that

• morphisms are isogenies f : G→ G′ such that f∗(i, α) = (i′, α′).

To each continuous homomorphism g : B → B′ there is an associated pullback
functor g∗ : Def(B′)→ Def(B). Thus, Def defines a (pseudo)functor

{complete local rings}op → {categories}.

A stack is a (kind of) presheaf of groupoids. The functor DefG0 gives rise to a more
general kind of object, namely a presheaf of categories on the opposite category of
complete local rings. This more general concept demands a new name; thus, we
will speak of DefG0

as the pile2 of deformations of G0 and its Frobenius isogenies.

There is a category QCoh(Def) of quasicoherent (pre)sheaves of modules
over the structure sheaf ODef of the pile Def. An object of QCoh(Def) amounts to
a choice of data {MB ,Mg} consisting of

• for each complete local ring B, a functor MB : Def(B)op → ModB , and

• for each for each local homomorphism g : B → B′ a natural isomorphism

Mg : B′ ⊗B MB =⇒MB′ ◦ g∗ : Def(B)op → ModB′ ,

where g∗ : Def(B)→ Def(B′) is the functor induced by base change along g,

together with coherence data equating Mg′g with a composition of Mg′ and Mg.

Example 4.2. Given G/B, let ωB(G/B) denote the B-module of invariant 1-
forms on G. Because 1-forms can be pulled back along isogenies, this defines an
object ω ∈ QCoh(Def).

Example 4.3. Given G/B, let degB(G/B) := B. To an isogeny f : G → G′, we
associate the map degB(f) : degB(G′/B)→ degB(G/B) induced by multiplication
by the integer deg(f). This defines an object deg ∈ QCoh(Def), the degree sheaf.

2This term was suggested by Matt Ando.
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4.4. Power operations and QCoh(Def). Let E denote the Morava
E-theory associated to our fixed formal group G0/k.

Recall (4.1) the total power operation Pm : π0R → π0R ⊗π0E E
0BΣm defined

for K(n)-local commutative E-algebras R. The function Pm is multiplicative (i.e.,
Pm(ab) = Pm(a)Pm(b)), but not additive. We may obtain a ring homomorphism by
passing to the quotient Am = E0BΣm/Itr of E0BΣm by the ideal Itr ⊆ E0BΣm
generated by the image of all transfers maps from inclusions of the form Σi ×
Σm−i ⊂ Σm with 0 < i < m. The composite map

Pm : π0R
Pm−−→ π0R

BΣ+
m ≈ π0R⊗π0E E

0BΣm → π0R⊗π0E E
0BΣm/Itr (4.3)

is a ring homomorphism.
The key to understanding power operations are the following result due to

Strickland. To state it, it is useful to note that we can form a quotient category
Def(B)/∼ of Def(B) by formally identifying isomorphic objects (possible exactly
because there are no non-trivial automorphisms in this category), and the projec-
tion functor is an equivalence of categories.

We write Defr(B)/∼ for the set of morphisms which correspond to isogenies of
degree pr. It is straightforward to show that elements of Defr(B)/∼ are in bijective
correspondence with pairs (G,H), where G is an object of Def0(B)/∼ and H ≤ G
is a finite subgroup scheme of rank pk; the correspondence sends an isogeny to its
kernel.

Theorem 4.4 (Strickland [Str97], [Str98]). There exist complete local rings Ar
(for r ≥ 0), finite and free as A0-modules, so that

{local homomorphisms Ar → B} ←→ Defr(B)/∼ .
Furthermore, there is a natural identification of rings

E0BΣpr/Itr ≈ Ar.
As a consequence, the functor B 7→ Def(B) from complete local rings to

(graded) categories is represented by a graded affine category object {Ar} in
(complete local rings)op. Thus, QCoh(Def) is equivalent to a category of comod-
ules, whose objects are A0-modules M equipped with module maps

ψr : M → t
Ar

s ⊗A0 M,

which satisfy an evident coassociativity property. (There are ring maps s, t : A0 →
Ar corresponding to “source” and “target” in the graded category; we use super-
scripts to indicate the corresponding A0-module structures on Ar.) Furthermore,
the power operation maps P pr of (4.3) make π0R into a comodule; i.e., (4.4) refines
π0 to a functor

π0 : hCom(E)K(n) → QCoh(Def)

from the homotopy category of K(n)-local commutative E-algebra spectra, to the
category of quasi-coherent sheaves of modules on Def, so that the value of π0(R)
at the universal deformation in Def(A0) precisely the ring π0R.

Remark 4.5. The existence of the functor π0 is essentially an observation of
Ando, Hopkins, and Strickland (see [AHS04]). A construction is given in [Rez09].
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4.5. Additional structure. The functor π0 to sheaves on Def admits sev-
eral additional refinements, which we pass over quickly. (Most are discussed
in [Rez09]; see [BF] for a treatment of completion.)

• QCoh(Def) is a symmetric monoidal category, and π0 naturally takes val-
ues in QCoh(Def,Com), the category of sheaves of commutative rings in
QCoh(Def).

• There is an extension to a functor π∗ : hCom(E)K(n) → QCoh∗(Def,Com),
where the target is a category of graded ring objects in QCoh(Def).

• The output of π∗ is (in a suitable sense) complete with respect to the maximal
ideal of A0.

• The rings π0R satisfy a Frobenius congruence. We say that an object
M ∈ QCoh(Def,Com) satisfies this condition if, for all formal groups G/B
with Fp ⊆ B, the map

B
φ ⊗B MB(G, d) ≈MB(φ∗G,φ∗(d)) = MB(φ∗G,M∗(d))

F∗−−→MB(G, d)

coincides with the relative pth power map on the ring MB(G, d), for any
d ∈ D(G/B).

In terms of the comodule formulation of QCoh(Def,Com), this amounts to
saying that the composite

M
ψ1−−→ A1

s ⊗A0
M

γ⊗id−−−→ (A0/p)⊗A0
M = M/p

is the pth power map on M , where γ : A1 → A0/p is the map representing
Def0 → Def1 sending G 7→ (F : G→ φ∗G).

• The Frobenius congruence for π0R is witnessed by a non-additive operation
on π0. To state this, note that there is A0-module homomorphism ε : A1 →
A0 lifting γ : A1 → A0/p. Using this, we define a homomorphism of abelian
groups

Q : π0R
ψ1−−→ A1 ⊗A0

π0R
ε⊗id−−−→ A0 ⊗A0

π0R = π0R,

which satisfies Q(x) ≡ xp mod p. The witness is a (non-additive) natural
operation θ : π0R→ π0R satisfying Q(x) = xp + pθ(x).

Remark 4.6. Mathew, Naumann, and Noel have observed [MNN] that the mere
existence of a witness for the Frobenius congruence allows one to show that any
pr-torsion element in the homotopy of a K(n)-local commutative E-algebra is
nilpotent. Using this together with the nilpotence theorem of Devinatz-Hopkins-
Smith, they prove a conjecture of May: for any commutative S-algebra R the
kernel of the Hurewicz map π∗R→ H∗(R,Z) consists of nilpotent elements.

The outcome of the additional structure outlined above is that there exists a
refinement of the homotopy functor π∗ : hCom(E)K(n) → Mod(E∗) to a functor

π∗ : hCom(EG0
)K(n) → TG0
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to a certain algebraically defined category TG0
, whose construction depends only

on the formal group G0/k.

Example 4.4. If G0/k = Gm/Fp, the formal multiplicative group, then EG0
=

KUp is p-complete complex K-theory. The category TG0
is the category of p-

complete Z/2-graded θp-rings described by Bousfield [Bou96].

4.6. The quadratic nature of QCoh(Def). Remarkably, making cal-
culations about objects in QCoh(Def) is far more tractable than the above suggests.
This is because the representing coalgebra {Ar} is “quadratic”. This means the
following: an object of QCoh(Def) is determined, up to canonical isomorphism, by
its underlying module M and the structure map ψ1 : M → A1 ⊗A0

M , which is
subject to a single relation, namely that there exists a dotted arrow in the following
diagram of π0E-modules:

M
ψ1 //

��

t
A1

s ⊗A0
M

id⊗ψ1

��
t
A2

s ⊗A0 M
∇⊗id

//
t
A1

s ⊗A0

t
A1

s ⊗A0 M

(4.4)

where ∇ encodes composition of two morphisms of degree p in Def. In particular,
the category QCoh(Def) can be reconstructed using only knowledge of the rings
π0E, A1, and A2, and the ring homomorphisms s, t, and ∇.

Example 4.5. Multiplicative group. For G0/k = Gm/Fp, the rings Ar ≈ Zp for
all r. An object in QCoh(Def) amounts to a Zp-module M equipped with an
endomorphism ψ : M →M .

Example 4.6. Height 2. When E is associated to a formal group of height 2,
it is possible to give a completely explicit description of QCoh(Def), by using
explicit formulas obtained from the theory of elliptic curves. For instance, let G0

be the formal completion of the supersingular elliptic curve over F2. In this case,
A0 = Z2[[a]], A1 = π0E[d]/(d3−ad−2), and the ring homomorphisms s, t : A0 → A1

are given by s(a) = a and t(a) = a2 + 3d− ad2. The ring A2 is the pullback of

A1
t ⊗A0

s
A1

w⊗id−−−→ A1
s←− A0

where w : A1 → A1 sends w(a) = t(a) and w(d) = a − d2. (The map w classifies
the operation of sending a p-isogeny of elliptic curves to its dual isogeny.) The map
∆ is the evident inclusion map. The above description is outlined (admittedly in
very rough form) in [Reza]. Zhu [Zhu14] has calculated a similar example at the
prime 3.

Example 4.7. Height 2, modulo p. It is possible to give a uniform description of
this structure at height 2, if we work modulo the prime. Fix a supersingular elliptic
curve C0 over Fp whose Frobenius isogeny satisfies F 2 = −p (such always exist),
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and let G0 be its formal completion. Then, following an observation of [KM85,
13.4.6], we see that A1/p ≈ Fp[[a1, a2]]/( (ap1 − a2)(a1 − ap2) ), so that s, t : A0/p =
Fp[[a]] → A1/p send s(a) = a1 and t(a) = a2; the rings Ar/p can be described
similarly. See [Rez12], especially §3.

In the general case, the quadraticity of QCoh(Def) is a consequence of a stronger
theorem: that the algebra of power operations for Morava E-theory is Koszul.

4.7. The ring of power operations is Koszul. We observe that
QCoh(Def) is equivalent to a category of modules over an associative ring Γ :=⊕

HomA0(Ar, A0). In particular, it is an abelian category with enough projectives
and injectives. In their work, Ando, Hopkins, and Strickland perceived that the
ring Γ should have finite homological dimension (see discussion at the end of §14
in [Str97]). That this is so is a consequence of the following theorem.

Theorem 4.7 ( [Rezc]). The ring Γ is Koszul, and thus objects of QCoh(DefG0
)

admit a functorial resolution by a “Koszul complex”. More precisely, there is a
functor C : QCoh(Def) → Ch(QCoh(Def)) together with a natural augmentation
ε : C(M) → M which is a quasi-isomorphism if M is projective as a π0E-module.
Furthermore,

Ck(M) = Γ⊗π0E Ck ⊗π0E M,

where Ck is a π0E-bimodule which is (i) free and finitely generated as a right
π0E-module, and (ii) Ck = 0 if k > n, where n is the height of the formal group
G0.

As a consequence, Γ has global dimension 2n, where n is the height of the
formal group.

Remark 4.8. The proof of (4.7) given in [Rezc] is purely topological, making no
reference to the interpretation of QCoh(Def) in terms of isogenies of formal groups.
The proof is inspired by the theory of the Goodwillie calculus of the identity functor
on spaces, and in particular by the work of Arone-Mahowald [AM99] on the K(n)-
local homotopy type of the layers of the Goodwillie tower of the identity functor
evaluated at odd spheres. They show that the K(n)-local homotopy type of an
odd sphere is concentrated purely at layers pk for 0 ≤ k ≤ n.

Remark 4.9. The statement of (4.7) is purely a statement about deformations
about formal groups and their isogenies, and thus should in particular admit a
proof which does not use topology. I do not know such a proof in general, but such
a purely algebro-geometric proof exists in the cases n = 1 and n = 2; see [Rez12]
for the height 2 case.

Remark 4.10. Ando, Hopkins, and Strickland originally conjectured a particular
form for a finite complex such as that in terms of (4.7), in terms of a “Tits building”
associated to subgroups of GE [p], the p-torsion subgroup of the formal group GE .
Their original complex in the height 2 case can be constructed using the arguments
of [Rez12]. Recently, Jacob Lurie has shown how (4.7) can be used to recover the
original proposal of Ando, Hopkins, and Strickland.
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4.8. Computing maps of K(n)-local E-algebras. We can use the
theory described above to describe the E2-term of a spectral sequence computing
the space of maps between commutative E-algebras. We describe how this works
in a special case.

Let R,F be two K(n)-local commutative E-algebras equipped with an aug-
mentation to E. There is a spectral sequence

Es,t2 =⇒ πt−sCom(E)aug
K(n)(R,F ) (4.5)

computing homotopy groups of the derived space of maps in the category of aug-
mented K(n)-local commutative E-algebras. When π∗R is smooth over π∗E, the
E2-term takes the form

Es,t2 ≈

{
T/E∗(π∗R, π∗F ) if (s, t) = (0, 0),

ExtsQCoh(Def)(ω
−1/2 ⊗ Q̂(π∗R), ω(t−1)/2 ⊗ π∗F ) otherwise.

(4.6)

Here Q̂(π∗R) is the module of indecomposables of the augmented ring π∗R (com-
pleted with respect to the maximal ideal of π∗E), π∗F is the augmentation ideal of
π∗F , and ω is the module of invariant 1-forms (4.2). In this situation, the spectral
sequence is strongly convergent, and is non-zero for only finitely many values of s.

5. Tangent spaces to cochains and Φn(S2d−1)

5.1. Derived indecomposables of commutative ring spectra.
Fix a commutative ring A, and consider an augmented commutative A-algebra
R; i.e., an A-algebra equipped with an A-algebra map π : R → A. We can
consider the A-module T ∗A,π(R) := I/I2 of indecomposables with respect to
the augmentation, where I = Ker(π). In geometrical terms, T ∗A,π(R) is the
cotangent space to Spec(R) at the point corresponding to π. The dual module
TA,π(R) := HomA(T ∗A,π(R), A) can be viewed as a tangent space at π.

This cotangent space construction admits a derived generalization to commuta-
tive ring spectra. Given a commutative S-algebra A, and an augmented commuta-
tive A-algebra R, there is an A-module of derived indecomposables constructed
by Basterra [Bas99], and which we will also denote by T ∗A(R) (taking the map π
to be understood).3 We write TA(R) := HomA(T ∗A(R), A) for the corresponding
“tangent space”.

We note two alternate descriptions of these constructions, which follow from
work of Basterra and Mandell ( [BM05], especially §2).

• The cotangent functor T ∗A : Comaug
A → ModA is a kind of stabilization func-

tor. It is most conveniently expressed in terms of an equivalence Comaug
A ≈

Comnu
A between augmented and non-unital algebras, so that

T ∗A(R) ≈ hocolimn ΩnnuΣnnu(I),

3This functor is also called “reduced topological Andre-Quillen cohomology”.
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where I is the homotopy fiber of the augmentation R→ A viewed as a non-
unital algebra, and Σnu and Ωnu are loop and suspension functors in the
homotopy theory of Comnu

A .

• The tangent space module can also be described as “functions to the dual
numbers”. That is, the underlying spaces of the spectrum TA(R) can be
identified as

Ω∞+tTA(R) ≈ Comaug
A (R,An ΩtA),

where An ΩtA is a split square-zero extension of A by a shift of A.

Given a based space X and a commutative S-algebra A, we can apply these
constructions to the cochain algebra AX+ := Hom(Σ∞(X+), A), which is a commu-
tative A-algebra equipped with an augmentation corresponding to the basepoint
of X.

Example 5.1. Take A = HQ, the rational Eilenberg-Mac Lane spectrum. For
spaces X which are simply connected and of finite-type, we have a natural isomor-
phism

π∗THQ(HQX+) ≈ π∗(X)⊗Q

from the homotopy of the tangent space spectrum to the rational homotopy groups
of X. This is a modern restatement of a well-known fact of rational homotopy
theory (e.g., [Sul77, Thm. 10.1]).

Example 5.2. Take A = HFp, the Eilenberg-Mac Lane spectrum of the algebraic

closure of Fp. Then THFp
(HFX+

p ) ≈ 0 by [Man06, Prop. 3.4]. Mandell’s work

shows that the cochain spectrum HFX+

p contains complete information about the
mod p homotopy type of simply connected finite-type X, but this information
cannot be extracted from the tangent space.

It turns out that for K(n)-local rings, the (co)tangent space behaves more
like rational homology than mod p-homology, where the role of rational homotopy
groups is replaced with the Bousfield-Kuhn functor.

5.2. The tangent space to cochains for K(n)-local rings. Let
A be a K(n)-local commutative S-algebra. For a based space X, we can construct
comparison maps which relate the A cohomology/homology of the spectrum
ΦnX with the tangent/cotangent space of the cochain ring AX+ . These take the
form

c∗X : T ∗A(AX+)→ HomA(ΦnX,A) and cX : A ∧ ΦnX → TA(AX+).

Remark 5.1. Here is an idea of how to build c∗X (the map cX is obtained by
taking A-linear duals). Given a space X, apply Φn to the tautological map u : X →
Ω∞Σ∞X, obtaining

ΦnX
Φn(u)−−−−→ Φ(Ω∞Σ∞X) ≈ (Σ∞X)K(n).
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Taking functions into a K(n)-local ring A gives

κX : AX ≈ Hom((Σ∞X)K(n), A)→ Hom(ΦnX,A).

The object AX is the augmentation ideal of AX+ , and its stabilization as a non-
unital A-algebra is T ∗A(AX+). The map c∗X is constructed as the limit of the
collection of maps

Σnnu(AX)→ AΩnX κX−−→ HomA(Φn(ΩnX), A) ≈ Ω−nHomA(ΦnX,A),

where we have used the fact that Φn commutes with Ω up to weak equivalence.

Mark Behrens and I have recently proved the following result, which shows the
comparison map is an isomorphism for odd-dimensional spheres.

Theorem 5.2. For any K(n)-local commutative ring A, and X = S2d−1, the maps
cX and c∗X induce isomorphisms in K(n)-homology.

Remark 5.3. A consequence of the proof is a natural identification of E∗-modules

Ck ≈ E∧∗ ∂pk(S1)K(n),

where Ck is the module in the Koszul resolution of (4.7), with the E-homology
of the pkth layer of the Goodwillie tower of the identity functor, evaluated at the
circle S1.

Remark 5.4. Combining (5.2) with remarks from §5.1, we see that we can use
the spectral sequence (4.5) to compute π∗(E ∧ Φn(S2d+1). By (4.6), the E2-term
is

Es,t2 ≈ ExtsQCoh(Def)(ω
d−1, ω(t−1)/2 ⊗ nul) =⇒ E∧t−sΦnS

2d−1,

where nul ∈ QCoh(Def) is the object corresponding to the comodule M = A0

whose coaction maps ψr : M → Ar ⊗A0
M are identically 0.

Explicit calculations show that, for n = 1, 2, the only non-vanishing groups are
when s = n, and thus this gives a complete calculation in that case. For n = 1,
this recovers calculations of Bousfield [Bou99]. Details are provided in [Rezb].
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[Bas99] M. Basterra, André-Quillen cohomology of commutative S-algebras, J. Pure
Appl. Algebra 144 (1999), no. 2, 111–143.

[BF] T. Barthel and M. Frankland, Completed power operations for morava E-
theory, arXiv:1311.7123.

[BM05] M. Basterra and M. A. Mandell, Homology and cohomology of E∞ ring spec-
tra, Math. Z. 249 (2005), no. 4, 903–944.

[BMMS86] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H∞ ring spectra
and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-
Verlag, Berlin, 1986.

[Bou75] A. K. Bousfield, The localization of spaces with respect to homology, Topology
14 (1975), 133–150.

[Bou87] , Uniqueness of infinite deloopings for K-theoretic spaces, Pacific J.
Math. 129 (1987), no. 1, 1–31.

[Bou96] , On λ-rings and the K-theory of infinite loop spaces, K-Theory 10
(1996), no. 1, 1–30.

[Bou99] , The K-theory localizations and v1-periodic homotopy groups of H-
spaces, Topology 38 (1999), no. 6, 1239–1264.

[Bou05] , On the 2-primary v1-periodic homotopy groups of spaces, Topology
44 (2005), no. 2, 381–413.

[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules,
and algebras in stable homotopy theory, Mathematical Surveys and Mono-
graphs, vol. 47, American Mathematical Society, Providence, RI, 1997, With
an appendix by M. Cole.

[GH04] P. G. Goerss and M. J. Hopkins, Moduli spaces of commutative ring spectra,
Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315,
Cambridge Univ. Press, Cambridge, 2004, pp. 151–200.

[Goe] P. G. Goerss, The Adams-Novikov spectral sequence and the homotopy groups
of spheres, arXiv:0802.1006.

[HKR00] M. J. Hopkins, N. J. Kuhn, and D. C. Ravenel, Generalized group characters
and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000),
no. 3, 553–594.

[Hop02] M. J. Hopkins, Algebraic topology and modular forms, Proceedings of the
International Congress of Mathematicians, Vol. I (Beijing, 2002) (Beijing),
Higher Ed. Press, 2002, pp. 291–317.

[HS98] Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy
theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49.

[KM85] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of
Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ,
1985.



22 Charles Rezk

[Kuh89] N. J. Kuhn, Morava K-theories and infinite loop spaces, Algebraic topology
(Arcata, CA, 1986) (Berlin), Lecture Notes in Math., vol. 1370, Springer,
1989, pp. 243–257.

[Kuh08] , A guide to telescopic functors, Homology, Homotopy Appl. 10
(2008), no. 3, 291–319.

[LT66] Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie
groups, Bull. Soc. Math. France 94 (1966), 49–59.

[Man06] M. A. Mandell, Cochains and homotopy type, Publ. Math. Inst. Hautes
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