MSRI TALK, APRIL 10, 2014

CHARLES REZK

1. Isogenies

Formal group G / A :

$$
\mathcal{O}_{G} \approx A \llbracket x \rrbracket, \quad x \mapsto F\left(x_{1}, x_{2}\right): \mathcal{O}_{G} \rightarrow \mathcal{O}_{G} \widehat{\otimes}_{A} \mathcal{O}_{G}
$$

Isogeny: $f: G \rightarrow G^{\prime}$ such that $f^{*}: \mathcal{O}_{G^{\prime}} \rightarrow \mathcal{O}_{G}$ is finite locally free.
$\Longrightarrow K=\operatorname{Ker}(f), \mathcal{O}_{K}=\mathcal{O}_{G} \otimes_{\mathcal{O}_{G^{\prime}}} A$ is finite locally free over $A . \operatorname{deg}(f)=\operatorname{rank}_{A} \mathcal{O}_{K}$.
Example? $\widehat{\mathbb{G}}_{m} / \mathbb{Z}$.
$[p]: \widehat{\mathbb{G}}_{m} \rightarrow \widehat{\mathbb{G}}_{m},[p]^{*}(x)=p x+\cdots+x^{p}$.
Not an isogeny over \mathbb{Z}. Over \mathbb{Q}, isogeny of degree 1 (isomorphism). Over \mathbb{Z}_{p}, isogeny of degree p.

Frobenius isogeny. $\mathbb{F}_{p} \subseteq A$, any G / A,

$$
F^{r}: G \rightarrow\left(\phi^{r}\right)^{*} G, \quad x \mapsto x^{p^{r}},
$$

degree p^{r}. $\left(\phi: A \rightarrow A, \phi(a)=a^{p}\right.$.)
Over field $k \supseteq \mathbb{F}_{p}$. Unique factorization ($\operatorname{deg} f=p^{r}$).

2. Deformations

Fix G_{0} / k : k perfect char $p,[p]_{G_{0}}$ isogeny of degree p^{n}. (Height n formal group.)
Deformation structures. Given $G / A, A=$ complete local ring.

$$
\mathcal{D}(G / A)=\left\{(i, \alpha) \mid i: k \rightarrow A / \mathfrak{m}, \quad \alpha: i^{*} G_{0} \xrightarrow{\sim} G_{A / \mathfrak{m}}\right\} .
$$

Isogeny $f: G \rightarrow G^{\prime}$ over $A \Longrightarrow f_{*}: \mathcal{D}(G / A) \rightarrow \mathcal{D}\left(G^{\prime} / A\right)$:

$f_{*}((i, \alpha))=\left(i \phi^{r}, \alpha^{\prime}\right)$.
Exercise. For $\mathbb{F}_{p} \subseteq A$:

$$
F_{*}=\phi^{*}: \mathcal{D}(G / A) \rightarrow \mathcal{D}\left(\phi^{*} G / A\right)
$$

Date: June 28, 2015.

Pile of deformation structures. Def $=\operatorname{Def}_{G_{0}} . A$ complete local ring \Longrightarrow

$$
\operatorname{Def}(A):=\left\{\begin{array}{l}
\text { obj : }(G / A, \quad(i, \alpha) \in \mathcal{D}(G / A)) \\
\text { mor }: f: G \rightarrow G^{\prime}, \quad f_{*}(i, \alpha)=\left(i^{\prime}, \alpha^{\prime}\right)
\end{array}\right.
$$

Local homomorphism $g: A \rightarrow A^{\prime} \Longrightarrow g^{*}: \operatorname{Def}(A) \rightarrow \operatorname{Def}\left(A^{\prime}\right)$.
Def: a presheaf of categories on $\{\text { cpt loc rings }\}^{\text {op }}$. "Pile".
Quasi-coherent sheaves on Def. Objects of QCoh(Def) are $\left(\left\{M_{A}\right\},\left\{M_{g}\right\}\right)$:

$$
\begin{gathered}
A \rightsquigarrow M_{A}: \operatorname{Def}(A)^{\mathrm{op}} \rightarrow \operatorname{Mod}_{A}, \\
g: A \rightarrow A^{\prime} \rightsquigarrow M_{g}: A^{\prime} \otimes_{A} M_{A} \xrightarrow{\sim} M_{A^{\prime}} \circ g^{*} .
\end{gathered}
$$

Coherence, etc.
Example. $\omega \in \operatorname{QCoh}(\mathrm{Def})$.

$$
\omega_{A}(G / A):=\{\text { invt 1-forms on } G\},
$$

(rank $1 A$-module). Forms pullback along homomorphisms.
Example. deg \in QCoh(Def).

$$
\operatorname{deg}_{A}(G / A):=A, \quad f^{*}=\text { mult. by } \operatorname{deg}(p) \in \mathbb{Z}
$$

3. Digression: elliptic curves and isogenies

Formalism works more generally.
Pile of elliptic curves and isogenies. Ell.
Replace: complete local rings \rightarrow schemes, formal groups and def str \rightarrow ell curves, isog preserving def str \rightarrow all isogenies.

Or just isogenies of p th power degree: Ell ${ }^{p}$.
Example. Algebraic de Rham cohomology.

$$
C / S \mapsto H_{\mathrm{dR}}^{k}(C / S), \quad \text { coh sheaf over } S
$$

This is a functor, so gives object $H_{\mathrm{dR}}^{k} \in \mathrm{QCoh}($ Ell $)$.
Hypercohomology ss (algebraic "Hodge to de Rham").

$$
\begin{gathered}
H_{\mathrm{dR}}^{0}(C / S) \approx \mathcal{O}_{S} \\
0 \rightarrow H^{0}\left(\Omega_{C / S}\right) \rightarrow H_{\mathrm{dR}}^{1}(C / S) \rightarrow H^{1}\left(\mathcal{O}_{C / S}\right) \rightarrow 0
\end{gathered}
$$

rewrite as

$$
\begin{aligned}
0 \rightarrow \omega \rightarrow H_{\mathrm{dR}}^{1}(C / S) & \rightarrow \omega^{-1} \otimes \operatorname{deg} \rightarrow 0, \\
H_{\mathrm{dR}}^{2}(C / S) & \approx \operatorname{deg} .
\end{aligned}
$$

"Hodge class" in $\operatorname{Ext}_{\mathrm{Ell}}^{1}\left(\omega^{-1} \otimes \operatorname{deg}, \omega\right)$.
Remark. For $\mathrm{Ell}_{\mathbb{C}}^{p}$ (elliptic curves over \mathbb{C} and p-isogenies), have inclusion

$$
M F_{\text {weight }=2}\left(\Gamma_{0}(p)\right)^{W=-1} \hookrightarrow \operatorname{Ext}_{\operatorname{Ell}_{\mathrm{C}}^{p}}^{1}\left(\omega^{-1} \otimes \operatorname{deg}, \omega\right)
$$

$W=$ Atkin-Lehner involution.
Hodge class corresponds to $E_{2, p}(q)=E_{2}(q)-p E_{2}\left(q^{p}\right)$, where $E_{2}(q)=-\frac{1}{12}+\sum_{n, d \mid n} d q^{n}$.
Hodge class is non-trivial essentially "because" $E_{2}(q)$ is not a modular form. (Katz.)
Hope. We will note below that QCoh(Def) has something to do with Morava E-theory (as comm S-algebra).

Dream: QCoh(Ell) has similar relationship to elliptic cohomology, as a globally equivariant ultracommutative ring/scheme.

4. Def is representable; Morava E-theory

Fix G_{0} / k as before.
Aut (G / A) acts freely on deformation structures $\mathcal{D}(G / A)$.
\Longrightarrow at most one iso between any two objects of $\operatorname{Def}(A)(\operatorname{Def}(A)$ is "0-truncated" in Cat).
Can form $\operatorname{Def}(A) / \sim$: identify isomorphic objects. "Gaunt".
Let $\operatorname{Def}^{r}(A) / \sim:=$ set of morphisms of degree p^{r}. (If $r=0$, these are objects.)

$$
\operatorname{Def}^{r}(A) / \sim \longleftrightarrow\left\{(G, K) \mid K \leq G \text { subgroup of } \operatorname{deg} p^{r}\right\}
$$

4.1. Theorem (Lubin-Tate, Strickland). There exist complete loc rings $A_{r}, r \geq 0$, so

$$
\operatorname{Hom}\left(A_{r}, B\right) \approx \operatorname{Def}^{r}(B) / \sim
$$

(Local homomorphisms.) Isomorphism $A_{0} \approx \mathbb{W}_{p} k \llbracket u_{1}, \ldots, u_{n-1} \rrbracket$.
$\Longrightarrow \coprod \operatorname{Spec} A_{r}$ is a "graded affine category scheme".
$M \in \mathrm{QCoh}(\mathrm{Def})$ are same as A-comodules:

$$
\begin{gathered}
\left(\psi_{r}\right): M \rightarrow \prod_{r \geq 0} A_{r} \otimes_{A_{0}} M \quad \text { such that } \ldots \\
\text { 5. MORAVA } E \text {-THEORY }
\end{gathered}
$$

5.1. Theorem (Morava, Goerss-Hopkins-Miller, Strickland). There exists essentially unique comm S-algebra $E=E_{G_{0} / k}$ such that

$$
A_{r}\left[u, u^{-1}\right] \approx E^{*}\left(B \Sigma_{p^{r}}\right) / I, \quad|u|=2
$$

where $I=$ sum of images of transfers along all $\Sigma_{i} \times \Sigma_{p^{r}-i} \subset \Sigma_{p^{r}}, 0<i<p^{r}$.
In particular, $\pi_{*} E=A_{0}\left[u, u^{-1}\right]$.

6. Power operations for $K(n)$-local commutative E-algebras

$R=\mathrm{comm} E$-algebra: power operation

$$
P_{m}: \pi_{0} R \rightarrow \pi_{0} R^{B \Sigma_{m}^{+}} \approx \pi_{0} R \otimes_{E_{0}} E^{0} B \Sigma_{m}
$$

(Iso uses R is $K(n)$-local.)
Obtain ring homomorphims

$$
\psi_{r}: \pi_{0} R \rightarrow \pi_{0} R \otimes_{E_{0}} E^{0} B \Sigma_{p^{r}} \rightarrow \pi_{0} R \otimes_{A_{0}} A_{r}
$$

This makes $\pi_{0} R$ into A-comodule. Hence, we have

$$
\pi_{0}: \operatorname{Alg}(E)_{K(n)} \rightarrow \mathrm{QCoh}(\mathrm{Def})
$$

6.1. Proposition. Exists $\mathcal{A}=\mathcal{A}_{G_{0}}$, monadic over complete E_{*}-modules, and lift

Forget factors through $\mathcal{A} \rightarrow \mathrm{QCoh}(\text { Def, Ring* })_{\text {Frob }}$ (graded quasicoherent sheaves of (complete) commutative rings on Def which satisfy a "Frobenius congruence"). Restricts to equivalence

$$
\mathcal{A}^{\mathrm{tf}} \xrightarrow{\sim} \mathrm{QCoh}\left(\text { Def, } \mathrm{Ring}^{*}\right)_{\mathrm{Frob}}^{\mathrm{tf}},
$$

of full subcategories of p-torsion free objects.
(Ando-Hopkins-Strickland, R., Barthel-Frankland.)
Frobenius congruence. Skip? $R \in \mathrm{QCoh}\left(\right.$ Def, Ring) such that for $A \supseteq \mathbb{F}_{p}$,

$$
A^{\phi} \otimes_{A} R_{A}(G,(i, \alpha)) \xrightarrow{\sim} R_{A}\left(\phi^{*} G, \phi^{*}(i, \alpha)\right)=R_{A}\left(\phi^{*} G, F_{*}(i, \alpha)\right) \xrightarrow{F^{*}} R_{A}(G,(i, \alpha))
$$

coincides with relative Frobenius on ring $R_{A}(G,(i, \alpha))$.
Example. $G_{0}=\widehat{\mathbb{G}}_{m} / \mathbb{F}_{p}, E=K U_{p}$. All $A_{r}=\mathbb{Z}_{p}$.
$\mathcal{A} \approx$ category of p-complete $\mathbb{Z} / 2$-graded θ^{p}-ring (Bousfield).
A θ^{p}-ring (non-graded) is commutative ring A with function $\theta: A \rightarrow A$ such that

$$
\begin{gathered}
\theta(0)=0, \quad \theta(x+y)=\theta(x)+\theta(y)-\frac{1}{p} \sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k}, \\
\theta(x y)=x^{p} \theta(y)+y^{p} \theta(x)+p \theta(x) \theta(y)
\end{gathered}
$$

The map $\psi(x):=x^{p}+p \theta(x)$ is ring homomorphism, giving "coaction" $M \rightarrow A_{1} \otimes_{A_{0}} M=M$.

7. Quadratic description of QCoh(Def)

Recall that QCoh(Def) are comodules for $\left\{A_{r}\right\}$.
7.1. Proposition. The structure of comodule on is completely determined by an A_{0}-module M, together with A_{0}-module map

$$
\psi: M \rightarrow{ }^{t} A_{1}^{s} \otimes_{A_{0}} M
$$

such that there exists a dotted arrow A_{0}-module map in

(Note $\nabla \otimes \mathrm{id}$ is always mono.)
Thus, a small amount of data ($A_{1}, s, t, A_{2} \subset A_{1} \otimes A_{1}$) describes the category $\mathrm{QCoh}(\mathrm{Def})$.
7.2. Remark. Skip? At height 2, have $w: A_{1} \rightarrow A_{1}$ ring homomorphism classifying "dual isogeny". Whence isomorphism $\left(A_{1} \otimes_{A_{0}} A_{1}\right) / \nabla\left(A_{2}\right) \approx A_{1} / s\left(A_{0}\right)$ of A_{0}-bimodules, using $w \times \mathrm{id}: A_{1} \otimes_{A_{0}} A_{1} \rightarrow A_{1}$. Condition on ψ is $(w \times \psi) \psi \equiv 0 \bmod s\left(A_{0}\right)$.

At height 2, small primes, this has been worked out explicitly (R., Zhu).
7.3. Remark. Skip? For a s.s. curve over \mathbb{F}_{2}, have:

$$
\begin{gathered}
A_{0}=\mathbb{Z}_{2} \llbracket a \rrbracket, \quad A_{1}=A_{0}[d] /\left(d^{3}-a d-2\right), \\
s(a)=a, \quad t(a)=w(a)=a^{2}+3 d-a d^{2}, \quad w(d)=a-d^{2} .
\end{gathered}
$$

At all primes at height 2 , can describe everything $\bmod p$.
Example: ht 2, any p. Skip? $G_{0} / F_{p}=$ completion of particular s.s. curve. Then

$$
\begin{gathered}
A_{0} / p \approx \mathbb{F}_{p} \llbracket a \rrbracket, \quad A_{1} / p \approx \mathbb{F}_{p} \llbracket a_{0}, a_{1} \rrbracket /\left(\left(a_{0}^{p}-a_{1}\right)\left(a_{0}-a_{1}^{p}\right)\right), \\
A_{2} / p \approx \mathbb{F}_{p} \llbracket a_{0}, a_{1} \rrbracket /\left(\left(a_{0}^{p^{2}}-a_{1}\right)\left(a_{0}^{p}-a_{1}^{p}\right)\left(a_{0}-a_{1}^{p^{2}}\right)\right) . \\
s: a \mapsto a_{0}, \quad t: a \mapsto a_{1}, \quad \nabla: a_{0}, a_{2} \mapsto 1 \otimes a_{0}, a_{1} \otimes 1 .
\end{gathered}
$$

Koszul. QCoh(Def) has finite homological dimension $2 n$, and comes with "functorial small resolutions". Assuming we have data as above, we can compute Ext.

Skip? At height $2, \operatorname{Ext}_{\mathrm{QCoh}(\operatorname{Def})}(M, N)$ for M projective A_{0}-module is H_{*} of

$$
\begin{gathered}
\operatorname{Hom}_{A_{0}}(M, N) \rightarrow \operatorname{Hom}_{A_{0}}\left(M,{ }^{t} A_{1}^{s} \otimes_{A_{0}} N\right) \rightarrow \operatorname{Hom}_{A_{0}}\left(M,{ }^{w^{2} s}\left(A_{1} / s A_{0}\right)^{s} \otimes_{A_{0}} N\right) \\
f \mapsto \psi_{N} f-(\operatorname{id} \otimes f) \psi_{M}, \quad g \mapsto\left(w \times \psi_{N}\right) g+(w \times g) \psi_{M} . \\
\text { 8. SPECTRAL SEQUENCE FOR MAPS IN } \operatorname{Alg}(E)_{K(n)} / E
\end{gathered}
$$

Let R, F augmented $K(n)$-local E-algebras. \Longrightarrow spectral sequence

$$
E_{2}^{s, t} \Longrightarrow \pi_{t-s} \operatorname{Alg}(E)_{/ E}(R, F)
$$

For $\pi_{*} R$ smooth as a (complete) $\pi_{*} E$-algebra, and $\pi_{*} R$ and $\pi_{*} F$ concentrated in even degrees,

$$
E_{2}^{s, t}= \begin{cases}\mathcal{A}\left(\pi_{*} R, \pi_{*} F\right) & (s, t)=(0,0) \\ \operatorname{Ext}_{Q \operatorname{Coh}(\operatorname{Def})}^{s}\left(\omega^{-1} \otimes \widehat{Q}\left(\pi_{*} R\right), \omega^{t / 2-1} \otimes \pi_{*} \bar{F}\right) & \text { otherwise }\end{cases}
$$

\widehat{Q} is (completion of) indecomposables; $\pi_{*} \bar{F} \subset \pi_{*} F$ is augmentation ideal.
Example. (Special case of conjecture ${ }^{1}$ of Hopkins-Lurie.)
Fix $G_{0} / \overline{\mathbb{F}}_{p}$ over alg closed field, height 2. (E.g., completion of a supersingular elliptic curve.)

Can show

$$
\operatorname{Alg}(S)\left(\Sigma_{+}^{\infty} \mathbb{Z}, E\right) \approx \overline{\mathbb{F}}_{p}^{\times} \times K\left(\mathbb{Z}_{p}, 3\right)
$$

(Same as $\operatorname{Alg}(E)_{/ E}\left(\left(E \wedge \Sigma_{+}^{\infty} \mathbb{Z}\right)_{K(n)}, E \times E\right)$.)
This is less exciting than it looks: know $\pi_{* \geq 4}=0$ by Ravenel-Wilson, and π_{3} is known (e.g., Sati-Westerland).

Proof. Have that $\widehat{Q}\left(E_{*}^{\wedge} \mathbb{Z}\right) \approx$ deg. Calculate explicitly, using explicit height 2 formulas. All $E_{2}^{s, t}$ vanish except $E_{2}^{0,0} \approx \overline{\mathbb{F}}_{p}^{\times}$and

$$
E_{2}^{1,4}=\operatorname{Ext}_{\mathrm{QCoh}(\operatorname{Def})}^{1}\left(\omega^{-1} \otimes \operatorname{deg}, \omega\right) \approx \mathbb{Z}_{p}
$$

Remark. Assume G_{0} is from s.s. elliptic curve $C_{0} . E_{2}^{1,4}$ generated by Hodge class:

$$
0 \rightarrow \omega \rightarrow H_{\mathrm{dR}}^{1}(C / S) \rightarrow \omega^{-1} \otimes \operatorname{deg} \rightarrow 0
$$

of universal deformation $C / \operatorname{Spec}\left(A_{0}\right)$.
Remark.

$$
\pi_{3} \operatorname{Alg}(S)\left(\Sigma_{+}^{\infty} \mathbb{Z}, \mathrm{TMF}_{p}\right)=\left[\Sigma^{3} H \mathbb{Z}, \mathrm{gl}_{1}\left(\mathrm{TMF}_{p}\right)\right] \approx \mathbb{Z}_{p}^{c_{p}}
$$

(p-complete TMF.)
$c_{p}=\operatorname{dim} \mathrm{MF}_{2}\left(\Gamma_{0}(p)\right)^{W=-1}=\left(\right.$ s.s. j-invts in $\left.\mathbb{F}_{p}\right)+\frac{1}{2}$ (s.s. j-invts in $\left.\mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}\right)$. (Ogg.)
Department of Mathematics, University of Illinois, Urbana, iL
E-mail address: rezk@math.uiuc.edu

[^0]
[^0]: ${ }^{1}$ Word on the street: theorem.

